ГОСУДАРСТВЕННЫЯ СТАНДАРТ СОЮЗА ССЕ

CBHHEU

Методы определения олова

FOCT

20580.6-80*

Lead.

Methods for the determination of tin

[CT C3B 911-78]

OKCTV 1725

Взамен ГОСТ 20580.6—75

Постановлением Государственного комитета СССР по стандартам от 29 апреля 1980 г. № 1976 срок действия установлен

c 01.12.80

Проверен в 1983 г. Постановлением Госстандарта от 20.12.83 № 6396 срок действия продлен

до 01.12.91

Несоблюдение стандарта преспедуется по закону

Настоящий стандарт устанавливает фотометрический и полярографический методы определения олова от 0,0002 до 0,2% в свище (99,992—99,5%).

Стандарт полностью соответствует СТ СЭВ 911-78.

1. ОБЩИЕ ТРЕБОВАНИЯ

- 1.1. Общие требования к методам анализа по ГОСТ 20580.0—80.
- 1.2. Правильность получаемых результатов анализа контролируется одновременным определением массовой доли мышьяка в соответствующем СО свинца № 1591—79—1594—79.

2. ФОТОМЕТРИЧЕСКИЙ МЕТОД

Метод основан на экстрагировании хлороформом из азотнокислой среды комплексного соединения, образованного четырехвалентным оловом с купфероном, удалении хлороформа выпариванием и фотометрировании оранжево-красного фенилфлуоронового комплекса при длине волны 510 нм.

2.1. Аппаратура, реактивы и растворы

Спектрофотометр или фотоэлектроколориметр любого типа для измерения в видимой области спектра.

Издание официальное

Перепечатка воспрощена

 Переиздание декабрь 1984 г. с Изменением № 1, узвержденным в декабре 1983 г. (ИУС 4—84). Кислота азотная по ГОСТ 4461—77, разбавленная 1:1 и растворы с (HNO₃) = 0.5 моль/дм³ и с (HNO₃) = 0.2 моль/дм³.

Кислота серная по ГОСТ 4204-77 и разбавленияя 1:1, 1:9

и 1:49.

Кислота винная по ГОСТ 5817—77, 5 и 50%-ные растворы. Аммоний азотнокислый.

Аммиак водный по ГОСТ 3760-79, разбавленный 1:1.

Калий марганцовокислый по ГОСТ 20490—75, раствор с $(\frac{1}{3} \text{ KMnO}_4) = 0,1 \text{ моль/дм}^3$.

Купферон по ГОСТ 5857-79, 1%-ный раствор.

Хлороформ.

Спирт этиловый по ГОСТ 18300-72.

Фенолфталенн по ГОСТ 5850-72, 1%-ный раствор в этиловом

спирте.

Фенилфлуорон, 0,03%-ный раствор: 0,03 г фенилфлуорона растворяют в 100 см³ этилового спирта в присутствии 2 см³ серной кислоты (1:1) при нагревании на водяной бане до получения прозрачного раствора.

Желатин пищевой по ГОСТ 11293-78, 0,5%-ный раствор, све-

жеприготовлениый.

Олово металлическое по ГОСТ 860-75.

Стандартные растворы олова.

Раствор A: 0,1 г олова растворяют в 10 см³ серной кислоты и изгревают до выделения паров серного ангидрида. После охлаждения разбавляют серной кислотой (1:9), переводят в мерную колбу вместимостью 1000 см² и доводят до метки этой же кислотой.

1 см³ раствора А содержит 0,1 мг олова.

Раствор Б: 10 см³ раствора А переносят в мерную колбу вместимостью 100 см³ и разбавляют до метки серной кислотой (1:9). Раствор готовят перед употреблением.

1 см³ раствора Б содержит 0,01 мг олова.

Измененная редакция, Изм. № 1).

2.2. Проведение анализа

 2.2.1. В зависимости от ожидаемой массовой доли олова берут павески свижца, масса которых указана в табл. 1.

Таблица 1

Массовая доля опови, %	Масса извески, свинца, г	Объем аликвотной части раствора, см
От 0.0002 до 0.002	1.0	Весь объем
Ca. 0,002 > 0,01	1.0	10
» 0.01 » 0.05	0.2	10
> 0.05 < 0.2	0.2	2

Навеску растворяют при нагревании в 10 см³ азотной кислоты (1:1), содержащей 0,5 см³ 50%-ного раствора винной кислоты. При массовой доле олова свыше 0,002% раствор переносят в мерную колбу вместимостью 50 см3, доливают до метки раствором азотной кислоты концентрации 0,5 моль/дм3 и перемешивают. Весь раствор или его аликвотную часть, отобранную по табл. 1, выпаривают досуха на водяной бане.

Остаток растворяют в 5 см³ раствора азотной кислоты кон-центрации 0,5 моль/дм³ при 0,2 г навеске или в 10 см³ — при 1 г навеске. К раствору прибавляют несколько капель раствора марганцовокислого калия до слабо-розовой окраски и оставляют на 5 мин. Затем раствор нейтрализуют водным аммиаком (1:1) до появления осадка, не исчезающего при перемещивании. Осадок растворяют несколькими каплями раствора азотной кислоты концентрации 0,5 моль/дм3 и переводят растьор в делительную воронку вместимостью 100 см3. Стакан обмывают 10 см3 раствора азотной кислоты концентрации 0,5 моль/дм3 при 0,2 г навеске и 20 см3 - при I г навеске (в первом случае объем должен быть 20 см3, во втором — 40 дм2).

Приливают 2 см3 раствора купферона, перемешивают, прибавляют 5 см³ хлороформа и встряхивают 1 мян. Хлороформную фазу переводят в другую делительную воронку и экстракцию повторяют еще два раза, прибавляя каждый раз 2 см3 раствора купферона и 5 см³ хлороформа. Объединенные хлороформные экстракты промывают три раза раствором азотной кислоты концентрации 0,2 моль/дм°, прибавляя ее по 5 см³ каждый раз. Промытую хлороформную фазу сливают в стакан вместимостью 50 мл и нагревают на водяной бане до удаления основной части хлороформа.

Приливают 5 см3 азотной кислоты и нагревают на водяной бане до полного удаления хлороформа. Приливают 5 см3 серной кислоты (1:1) и выпаривают до появления паров серного ангидрида. Если раствор темного цвета, прибавляют несколько кристаллов азотнокислого аммония или несколько капель азотной кислоты и снова нагревают до появления паров серного ангидрида. Раствор охлаждают, обмывают стенки стакана 2—3 см³ воды и выпаривают

почти досуха (остаток делжен быть около 0,3 см2).

После охлаждения приливают 5 см3 5%-ного раствора винной кислоты, нагревают, охлаждают и переливают раствор в мерную колбу вместимостью 25 см3. При наличии осадка сульфата свинца раствор фильтруют через плотный фильтр «синяя лента», собирая фильтрат в мерную колбу вместимостью 25 см3, промывая осадок и стакан раствором кислоты (1:49). Прибавляют одну каплю раствора фенолфталенна, нейтрализуют аммиаком до слабо-розовой окраски, прибавляют 1,5 см3 серной кислоты (1:1), охлаждают, прибавляют 2,5 см3 раствора желатина, 5 см3 раствора фенилфлуорона (писле прибавления каждого реактива раствор перемешивают), разбавляют водой до метки и снова перемешивают. Через 20 мин измеряют оптическую плотность растворов при длине волны 510 им.

Раствором сравнения служит раствор контрольного опыта. Количество олова в колориметрируемом объеме устанавливают по градуировочному графику.

(Измененная редакция, Изм. № 1).

2.2.2. Для построения градупровочного графика в вять из шести стаканов вместимостью 50 см³ помещают 0,2; 0,5; 1,0; 2.0 и 3,0 см³ раствора Б (шестой служит для проведения контрольного опыта), что соответствует 2, 5, 10, 20 и 30 мкг олова, выпаривают до выделения паров серного ангарида и охлаждают. Во все шесть стаканов прибавляют по 5 см³ 5%-ного раствора винной кислоты и переводят в мерные колбы вместимостью 25 см³, обмывая стаканы раствором серной кислогы (1: 49).

Далее поступают, как указано в п. 2.2.1.

По полученным значениям оптических плотностей растворов и соответствующим им содержаниям олова строят градуировочный график.

3. ПОЛЯРОГРАФИЧЕСКИЙ МЕТОД

Метод основан на полярографировании олова на фоне соляной кислоты (1:3) при потенциале полуволны минус 0,50 В по отношению к насыщенному каломельному электроду. Свинец предварительно выделяют в виде сульфата и дополнительно соосаждают с сульфатом стронция.

3.1. Аппаратура, реактивы и растворы

Полярограф осциллографический ПО-5122, ППТ-1 или полярограф аналогичного типа.

Кислота азотная по ГОСТ 4461--77 и разбавлениая 1:3.

Кислота серная по ГОСТ 4204—77 и разбавленная 1:1, 1:10 в 1:20.

Кислота соляная по ГОСТ 3118—77, разбавленная 1:3. Стронций азотнокислый по ГОСТ 5429—74, 10%-ный раствор.

Железо хлорное по ГОСТ 4147—74, 5%-ный раствор, готовят на соляной кислоте, разбавленной 1:3.

Железо металлическое, восстановленное водородом, свободное от свинца, олова, титана, хрома и марганца.

Олово по ГОСТ 860-75.

Желатин пищевой по ГОСТ 11293—78, 0,5%-ный раствор, свежеприготовленный.

Ртуть металлическая по ГОСТ 4658-73.

Раствор олова: 0,1 г олова растворяют в 10 см³ серной кислоты, нагревают до полного гастворения навески и начала выделения

паров серного ангидрида. После охлаждения добавляют 100 см³ серной кислоты (1:10), выдерживают до растворения соли и переливают раствор в мерную колбу вместимостью 1000 см³. Объем раствора доводят до метки серной кислотой (1:10) и тщательно переменивают.

1 см3 раствора содержит 0,1 мг олова.

Растворы с известным содержанием олова: в шесть мерных колб вместимостью 100 см³ отмеривают пипетками соответственно 0,25; 0,5; 1,0; 1,5; 2,0 и 5,0 см³ стандартного раствора олова, прибавляют в каждую колбу по 2,5 см³ раствора хлорного железа, доводят до метки соляной кислотой (1:3) и перемешивают.

 Растворы с известным содержанием соответственно содержат 0,25; 0,5; 1,0; 1,5; 2,0 и 5,0 мг олова в литре.

(Измененная редакция, Изм. № 1).

3.2. Проведение анализа

Навеску свинца массой 2—4 г в зависимости от массовой доли олова помещают в коническую колбу вместимостью 250 см³, приливают 20—50 см³ азотной кислоты (1:3), накрывают часовым стеклом и растворяют при умеренном нагревании.

После растворения навески раствор охлаждают, разбавляют холодной водой до 70—80 см³, добавляют небольшими порциями при перемешивании 15 см³ серной кислоты (1:1) и оставляют в холодильнике с проточной водой на 1 ч.

Осадок сульфата свинца отфильтровывают на бумажный фильтр «белая лента», конус которого на 1/5 заполнен фильтробумажной массой. Собирают фильтрат в коническую колбу вмести-мостью 250 см³. Осадок в колбе и на фильтре промывают шесть раз серной кислотой (1:20).

К фильтрату приливают 10 см³ раствора азотнокислого стронция при перемецивании и оставляют в холодильнике с проточной водой на 30 мин. Осадок отфильтровывают на плотный двойной фильтр «синяя лента», собирая фильтрат в коническую колбу вместимостью 250 см³. Осадок в колбе и на фильтре промывают щесть раз холодной серной кислотой (1:20).

К фильтрату приливают 2,5 см³ раствора хлорного железа, перемещивают, нагревают до 50—60°С, прибавляют аммиак до осаждения гидроокисей и в избыток 10 см³, оставляют при той же температуре на 20—25 мин, после чего фильтруют на фильтр средней илотности «белая лента». Колбу и осадок промывают по три раза горячей водой (70—80°С).

Осадок с развернутого фильтра смывают тонкой струей горячей соляной кислоты (1:3) в ту же колбу, в которой велось осаждение, охлаждают, переводят в мерную колбу вместимостью 25 или 50 см³, доводят до метки той же кислотой и перемешивают. Часть раствора (20 см³) наливают в стаканчик, прибавляют около 1 г металлического железа, восстановленного водородом, и оставляют до полного восстановления трехвалентного железа и обесцвечивания раствора. За 5 мин до полярографирования прибавляют 0,5 см³ раствора желатина.

Раствор заливают в электролизер, придерживая частички железа у дна стаканчика магинтом, и проводят полярографирование олова при потенциале ника минус 0,50 В (по отношению к насыщенному каломельному электроду), начальном напряжении минус 0,3 В, конечном — минус 0,7 В, скорости напряжения 0,5 В/с периоде капания ртути из капилляра 5—6 с, задержке 2,8—4 с по схеме прибора «дифференциальная 1—3».

При использовании полярографа переменного тока с периодом капания ртути из капилляра 2—3 с полярографирование проводят в оптимальных условиях.

4. ОБРАБОТКА РЕЗУЛЬТАТОВ

4.1. Массовую долю слова (X_1) в процентах при фотометрическом методе определения вычисляют по формуле

$$X_1 = \frac{m_1 \cdot V \cdot 100}{V_1 \cdot m},$$

где m_1 — масса олова, найденная по градунровочному графику, г;

V — объем исходного раствора, см³;

 V_1 — объем аликвотной части раствора, см³;

m — масса навески свинца, г.

4.2. Массовую долю олова (X_2) в процентах при полярографическом методе определения вычисляют по формуле

$$X_2 = \frac{h \cdot c \cdot V}{H \cdot m \cdot 1000} \cdot 100,$$

где h — высота волны раствора анализируемой пробы, мм;

 с — концентрация олова в растворе с известным содержанием;

V - объем раствора анализируемой пробы, см3;

т — масса навески в аликвотной части раствора, г;

 Н — высота волны раствора с известным содержанием олова, мм.

(Измененная редакция, Изм. № 1).

4.3. Абсолютные допускаемые расхождения результатов параллельных определений не должны превышать значений, указанных в табл. 2.

Габлица 2

Массовия доля олова, %		Абоолютные допускаемые расхождания, Т	
-	От 0.0002 до 0.0005	0.00015	
	Ca. 0,0005 > 0,001	0.0003	
	» 0,001 » 0,002	0.0004	
	> 0,002 > 0,005	0.0007	
	» 0,005 » 0,01	100.0	
	» 0,01 » 0,015	0,0015	
	» 0,015 » 0,03	0,003	
	» 0.03 » 0.05	0,005	
	» 0.05 » 0.07	0,007	
	» 0,07 » 0,1	0,01	
	≥ 0.1 ≥ 0.2	0,015	

Изменение № 2 ГОСТ 20580.6-80 Свинец. Методы определения олова

Утверждено и введено в действие Постановлением Государственного комитета СССР по управлению качеством вродукции и стандартам от 17.07.90 № 2203

Дата введения 01.01.91

Под наименованием стандарта заменить код: ОКСТУ 1725 на ОКСТУ 1709. Пункт 1.1 после слова «анализа» дополнить словами: «и требования безопасности».

Пункт 1.2 исключить.

Пункт 2.1. Заменить слова: «5 и 50 %-ные растворы» на «растворы с массовой концентрацией 50 г/дм³ и 500 г/дм³»; «1 %-ный раствор» на «раствор с массовой концентрацией 10 г/дм³»; «по ГОСТ 5850—72, 1 %-ный раствор» на «по ТУ 6—09—5360—87, раствор с массовой концентрацией 10 г/дм³»; «0,03 %-ный раствор» на «по ТУ 6—09—05—289—78, раствор с массовой концентрацией 0,3 г/дм³»; «0,5 %-ный раствор» на «раствор с массовой концентрацией 5 г/дм³».

Раствор А. Заменить значение: 0,1 г на 0,100 г;

пятый абзац дополнить ссылкой: «по ГОСТ 22867—77»;

заменить ссылку: ГОСТ 18300-72 на ГОСТ 18300-87.

Пункт 2.2.1. Таблица 1. Графа «Масса навески свинца, г». Заменить значения: 1,0 на 1,000 (2 раза); 0,2 на 0,200 (2 раза);

заменить слова: «50 %-ного раствора винной кислоты» на «раствора винной: «ислоты с массовой концентрацией 500 г/дм³»; «5 %-ного раствора винной кислоты» на «раствора винной кислоты с массовой концентрацией 50 г/дм³»;

заменить значение: 50 мл на 50 см³.

Пункт 2.2.2. Первый абзац. Заменить слова: «5 %-ного раствора виннов кислоты» на «раствора винной кислоты с массовой концентрацией 50 гудм³».

Пункт 3.1. Первый абзац изложить в новой редакции: «Полярограф осцил-

лографический или полярограф переменного тока любого типа»;

заменить слова: «10 %-ный раствор» на «раствор с массовой концентрацией 10 г/дм³»; «5 %-ный раствор» на «раствор с массовой концентрацией 50 г/дм³»; «0,5 %-ный раствор» на «раствор с массовой концентрацией 5 г/дм³»; «Раствор олова» на «Стандартный раствор олова»; «Растворы с известным содержанием олова» на «Градуировочные растворы»; «Растворы с известным содержанием» на «Градуировочные растворы» «в литре» на «в 1 дм³».

Раствор олова. Заменить значение: 0,1 г на 0,100 г.

Пункт 3.2. Первый абзац. Заменить значения: 2—4 г на 2,000—4,000 г; пятый абзац. Заменить слово: «гидроокисей» на «гидроксидов»;

седьмой абзац. Заменить слова: «За 5 мин до полярографирования» на «За

5 мин до полярографирования на осциллографическом полярографе».

Пункт 4.2. Экспликация, Заменить слова: «в растворе с известным содержанием» на «в градуировочном растворе, мг/дм3»; «раствора с известным содержанием олова» на «олова в градуировочном растворе».

Пункт 4.3 изложить в новой редакции: «4.3. Абсолютные допускаемые расхождения результатов параллельных определений и результатов анализа ве должны превышать значений, приведенных в табл. 2. Таблица 2

Массовая доля олова, %	Допускаемые расхождення параллельных определений, %	Допускаемые расхож- : дения результатов ана- лиза, %
От 0,0002 до 0,0005 включ. Св. 0,0005 » 0,0010 » » 0,0010 » 0,0020 » » 0,0020 » 0,0050 » » 0,0050 » 0,0100 » » 0,015 » 0,030 » » 0,030 » 0,050 » » 0,050 » 0,100 » » 0,010 » 0,20 »	0,0001 0,0003 0,0004 0,0006 0,0010 0,001 0,003 0,005 0,008 0,01	0.0001 0,0004 0,0005 0,0008 0,0013 0,002 0,004 0,006 0,010 0,02