

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

МАТЕРИАЛЫ ПОЛИМЕРНЫЕ

метод определения дымообразования ГОСТ 24632--81

Издание официальное

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР ПО СТАНДАРТАМ Москва

МАТЕРИАЛЫ ПОЛИМЕРНЫЕ

Метод определения дымообразования

Materials polimer Method for determination of smoke development ГОСТ 24632—81

Постановлением Государственного комитета СССР по стандартам от 10 марта 1981 г. № 1247 срок действия установлен

с 01.01.1982 г.

2001.07.90= wyc 12-862

Настоящий стандарт распространяется на полимерные материалы и устанавливает метод сравнительной и количественной оценжи дымообразования в двух режимах: пламенного горения и тления.

Сущность метода состоит в измерении интенсивности светового потока, проходящего через задымленное пространство в испытательной камере при термическом разложении образца, и вычислении удельной оптической плотности дыма в зависимости от времени испытания, скорости дымообразования, индекса непрозрачности, массовой оптической плотности дыма.

В режиме пламенного горения на образец воздействует тепловое излучение печи и пламя газовой горелки, в режиме тления—

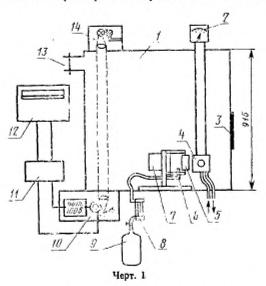
только тепловое излучение печи,

Метод не применим для оценки пожароопасности полимерных материалов.

1. ОТБОР ОБРАЗЦОВ

 1.1. Для испытания применяют образцы в форме квадрата со стороной 75 мм.

 Толщина образца должна соответствовать толщине материала. При толщине материала более 15 мм толщина образца должна быть (15±0,5) мм. Рекомендуется из пленочных материалов изготавливать образцы толщиной $(0,10\pm0,05)$ мм, из листовых материалов — $(3,0\pm0,2)$ мм.


1.3. Для каждого режима испытания должно быть не менее

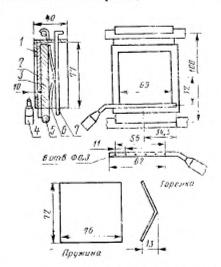
трех образцов.

2. АППАРАТУРА И МАТЕРИАЛЫ

 Для испытания используют установку (см. черт. 1) в которую входят:

камера дымовая герметичная 1 размером (915×915×610) мм внутрь которой из-за термического разложения образца выделяется дым, имеющая предохранительную панель 3 для сброса дав-

ления, смотровое стекло, вентиляционный канал 13, окно для. прохождения светового потока;


печь излучающая 7, обеспечивающая равномерный по всей экспонируемой поверхности образца тепловой поток плотностью до 4,0 Вт/см². Мощность нагревателя печи — не более 800 Вт; держатель образца 5 из нержавеющей стали толщиной 0,5 мм;

держатель образца в из нержавеющей стали толщиной о, в мм, горелка шестифакельная б, представляющая собой трубку из нержавеющей стали диаметром (2,0—2,5) мм. Конструкция дер-

жателя и горелки, а также их взаимное расположение приведены на черт. 2;

ротаметр 8 типа РС-ЗА для контроля расхода газа в горелке;

баллон 9 с бытовым газом для горелки;

I — корпус держателя образца; 2—образец; 3—прижимная яластява на асбоденсятной плиты толщиной 10 мм; 4—горсама; 5—оворные стержиц; 6—пружита из фосформетой броты толщиной 0,8 мм; 7—ягырь на стальной проволоки диаметром 3 мм.

Черт. 2

система фотометрическая для измерения интенсивности светового потока, состоящая из источника света 14 (лампа накаливания типа K12-30), приемника светового потока 10 (фотоэлемент типа Ф-3) со спектральной чувствительностью, близкой к спектральной чувствительности человеческого глаза, усилителя постоянного тока 11 с пределами от 10⁻⁵ до 10⁻⁷ А, самопишущего потенциометра (12) типа КСП-4 и системы, формирующей световой поток на фотоэлемент. Фотометрическая система должна обеспечивать измерение светового потока, интенсивностью 0,01% от начального с погрешностью ±3%;

радиометр 4 с милливольтметром 2 для измерения теплового потока излучающей печи, обеспечивающей измерение с погрешно-

стью ±15%.

- Газы природные топливные для коммунально-бытового назначения по ГОСТ 5542—78 или газы углеводородные сжиженные топливные для коммунально-бытового потребления по ГОСТ 20448—80.
 - 2.3. Фольга алюминиевая по ГОСТ 618-73.

3. ПОДГОТОВКА К ИСПЫТАНИЮ

 Образцы закрывают алюминиевой фольгой толщиной 0,05 мм так, чтобы оставалась открытой только экспони-

руемая поверхность размером (65×65) мм.

Образцы из легкоплавящихся материалов и пленок пришивают по всей экспонируемой поверхности (размер стежка 1 см) к обертке из алюминисвой фольги медной проволокой диаметром не более 0,3 мм.

3.2. Образцы перед испытанием кондиционируют по ГОСТ ·12423—66 при температуре (23±2)°С и относительной влажности (50±5)% не менее 24 ч, если в нормативно-технической документа-

пии на материал нет иных указаний.

4. ПРОВЕДЕНИЕ ИСПЫТАНИЯ

4.1. Образец взвешивают с погрешностью не более 0,1 г и устанавливают в держатель, плотно прижав его к кромкам держателя с помощью прижимной пластины, пружины и штыря.

4.2. Излучающую печь выводят на рабочий режим, обеспечива-

ющий илотность теплового потока 2,5 Вт/см2.

Допускается проводить испытания при других плотностях теплового потока, но не более 4,0 Вт/см². Плотность теплового потока устанавливают с помощью радиометра. После установления заданной плотности теплового потока печи радиометр сдвигают в сторону, освобождая место для образца.

4.3. Включают фотометрическую систему, которая должна быть

проверена и отрегулирована.

4.4. При испытании в режиме пламенного горения горелку поджигают, устанавливают расход газа 3,0 см³/с по ротаметру и поворачивают ее в рабочее положение. В режиме тления горелка не работает.

4.5. Держатель с образцом устанавливают на расстоянии 45 мм против излучающего отверстия лечи и одновременно, нажатием кнопки «начало отсчета времени» на диаграмме самописца отме-

чают начало испытаний.

4.6. Испытания заканчивают, когда дымообразование достигнет максимума, что соответствует минимуму светопропускания. После этого включают вентиляцию, открывают дверь камеры и вентилируют камеру до очищения от дыма. Затем вынимают держа-

тель с образцом, освобождают остатки образца и помещают их на З ч в эксикатор, после чего взвешивают с погрешностью не более 0.1 г.

 4.7. Плотность теплового потока печи контролируют радиометром непосредственно перед началом каждого испытания.

5. ОБРАБОТКА РЕЗУЛЬТАТОВ

5.1. Удельную оптическую плотность дыма ($D_{\,\,\mathrm{y}_{\mathrm{A}}}$) вычисляют по формуле

$$D_{yA} = \frac{V}{S \cdot L} \lg \frac{I_0}{I} = 132 \cdot \lg \frac{I_0}{I}$$

где V — объем камеры, равный 0,51 м³;

S — экспонируемая поверхность образца, равная 4,225-10 ⁻³ м²;

— длина светового пути, равная 0,915 м;

I — величины, соответствующие интенсивности светового потока в начальный момент и в процессе испытания (соответственно)

5.1.1. Максимальную удельную оптическую плотность дыма D_{max} , удельную оптическую плотность дыма за 2— 4-минутный период испытания ($D_{t \sim 2}$; D_{t-4}) вычисляют по формуле

$$D_{(\max, t-2, t=4)} = 132 \cdot \lg \frac{I_a}{I_{(\min, t-2, t=4)}}$$

где I_{міп}— величина, соответствующая минимальной интенсивности светового потока в течение испытания;

 $I_{t=2}$; $I_{t=4}$ — величины, соответствующие ослаблению интенсивности светового потока за 2—4-минутный период испытания.

5.2. Время (t_{16}) , соответствующее достижению $D_{y_A} = 16$, определяют из графика зависимости $D_{y_A} = f(t)$, который строят в соответствии с формулой по п. 5.1 на основании измеренной величины интенсивности светового потока в процессе испытания.

5.3. Максимальная скорость дымообразования определяется наибольшим значением тангенса наклона касательной к линии $D_{yx} = f(t)$ на участке максимального приращения удельной оптической плотности дыма в минуту.

5.4. Среднюю скорость дымообразования (K_{cp}) (вычисляют по формуле

$$\begin{split} K_{\text{cp}} = & \frac{I}{4} \left(\frac{0.9 D_m - 0.7 D_m}{t_{0.9} - t_{0.7}} + \frac{0.7 D_m - 0.5 D_m}{t_{0.7} - t_{0.5}} + \frac{0.5 D_m}{t_{0.5} - t_{0.3}} + \frac{0.3 D_m}{t_{0.5} - t_{0.3}} + \right. \\ & \left. + \frac{0.3 D_m - 0.1 D_m}{t_{0.3} - t_{0.1}} \right) \,, \end{split}$$

где $t_{0,8};\ t_{0,7};\ t_{0,5};\ t_{0,3};\ t_{0,1}$ — время достижения соответствующих значений $0.9D_m;\ 0.7D_m;\ 0.5D_m;\ 0.3D_m;\ 0.1D_m$, которые определяют графически из зависимости $D_{y,q}=f(t)$.

5.5. Индекс прозрачности дыма ($U_{\rm int}$) вычисляют по формуле

$$U_{\text{nm}} = \frac{D_m \cdot K_{\text{cp}}}{100t_{\text{so}}}.$$

5.6. Массовую оптическую плотность дыма (D_m) вычисляют по формуле

$$D_m = \frac{V}{m_1 L} \cdot \lg \frac{I_0}{I}$$
,

тде m — потеря массы образца в граммах, вычисляемая по формуле

$$m=m_1-m_2$$

где m_1 — масса образца до испытания, r;

та — масса образца после испытания, г.

 Запись результатов испытаний оформляют протоколом, в котором указывают:

наименование и марку материала, толщину и прочне сведения

о материале:

наименование предприятия, поставившего материал;

условия кондиционирования;

режим испытания — тление, пламенное горение;

плотность теплового потока;

показатели дымообразования;

число образцов, взятых для испытания;

дату испытания, фамилию лица, проводившего испытание; обозначение настоящего стандарта.

> Редактор А. С. Пшеничная Технический редактор В. Н. Прусакова Корректор Е. И. Морозова