

25567-82 MJU.1,2

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

КАОЛИН ОБОГАЩЕННЫЙ

МЕТОД СПЕКТРАЛЬНОГО АНАЛИЗА ГОСТ 25567—82

Издание официальное

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССЕ

КАОЛИН ОБОГАЩЕННЫЯ

Метод спектрального анализа

Concentrated kaolin. Spectrum analysis method ГОСТ 25567-82*

OKCTY 5709

Постановлением Государственного комитета СССР по стандартам от 30 декабря 1982 г. № 5302 срок действия установлен

с 01.01.84 до 01.01.89

Несоблюдение стандарта преследуется по закону

Настоящий стандарт распространяется на обогащенный каолии и устанавливает спектральный метод определения содержания окиси железа, двуокиси титана, окиси кальция, окиси магния, закиси марганца и окиси меди.

.Метод основан на сжигании пробы каолина в смеси с буферным порошком в канале угольного электрода, фотографировании спектра излучения на фотопластинку и количественном определении содержания окислов элементов по интенсивности их спектральных линий.

Спектральный анализ проводится с применением в качестве элемента сравнения германия или меди в случаях, когда не требуется ее определение.

Метод обеспечивает определение массовых долей окислов элементов-примесей в следующем диапазоне содержаний, в процентах:

(Измененная редакция, Изм. № 1).

Издание официальное

Перепечатка воспрещена

 Переиздание (декабрь 1986 г.) с Изменением № 1, утвержденным в июле 1985 г. (ИУС 10—85).

N2(VIN 12-88)

© Издательство стандартов, 1987

1. ОБЩИЕ ТРЕБОВАНИЯ

- 1.1. Для проведения спектрального анализа среднюю пробу каолина перемешивают, сокращают до массы не менее 100 г, сушат в течение 1 ч при 105—110°С и измельчают в агатовой или халцедоновой ступке до размера частиц, проходящих через сито с сеткой № 0063 по ГОСТ 6613—73, сушат около 2 ч при 105—110°С до постоянной массы и хранят в эксикаторе.
- Определение проводят параллельно не менее чем на двух навесках каолина.

1.3. При проведении анализа применяют реактивы и мате-

рналы «спектрально чистые».

1.4. Градуировочные графики проверяют по стандартным образцам «Шамот К2», или «Муллитовый огнеупор К-3», или «Каолин КК», или «Пегматит СО-1Б-74».

1.5. Стандартный образец подготавливают к анализу и прово-

дят через все его стадии аналогично пробам каолина.

1.6. Периодичность проверки правильности построения градуировочных графиков — на каждую партию анализируемых

проб.

 При отклонении воспроизведенных значений содержания примесей в стандартном образце от аттестованных значений, обозначенных в свидетельстве на него, анализ необходимо повторить.

2. АППАРАТУРА, МАТЕРИАЛЫ И РЕАКТИВЫ

2.1. Для проведения анализа применяют:

спектрограф кварцевый средней дисперсии, типа ИСП-30 со стандартной трехлинзовой системой освещения щели или аналогичный:

источник питания дуги постоянного тока 250 В, 25 А, типа

УГЭ-4 или аналогичный;

спектропроектор типа СПП-2 или аналогичный; микрофотометр типа ИФО-460 или аналогичный;

секундомер типа СДСпр-1А-2 или аналогичный;

шкаф сушильный с терморегулятором, обеспечивающий температуру нагрева 110°C, типа 2B-151 или аналогичный;

весы аналитические с погрешностью взвешивания не более 0,0002 г, типа ВЛР-200 или аналогичные;

ступки агатовые или халцедоновые, или яшмовые с внутренним днаметром 60-100 мм;

кюветы для фоторабот размером 150×300 мм;

фотопластинки для промышленных и научных целей спектрографические типа I;

U

электроды угольные спектральные марки С-2 или С-3, днаметром 6 мм, длиной 60 мм;

порошок графитовый марки ОСЧ 7-4:

кальку бумажную натуральную по ГОСТ 892-70:

этиловый ректификованный технический по ГОСТ 18300-72;

воду дистиллированную по ГОСТ 6709-72;

германий (IV) окись для спектрального анализа; стронций углекислый для спектрального анализа;

стандартный образец шамот К-2, или муллитовый огнеупор

К-3, или пегматит СО-1Б-74, или каолин КК:

метол (пара-метиламинофено сульфат) по ГОСТ 5.1177-71;

гидрохинон по ГОСТ 19627-74;

натрий сернистокислый по ГОСТ 195-77, ч. д. а.; натрий углекислый безводный по ГОСТ 83-79, ч. д. а.;

калий бромистый по ГОСТ 4160-74, ч. д. а.:

натрий серноватистокислый, ч. д. а.: аммоний хлористый по ГОСТ 3773-72.

ч. д. а.;

 образцы сравнения каолина в количестве не менее пяти; готовят из каолинов разного состава (см. обязательное приложение).

2.2. Допускается применять импортные материалы и аппаратуру, имеющие точность не ниже указанной в п. 2.1.

3. ПОДГОТОВКА К АНАЛИЗУ

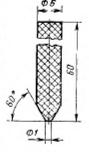
3.1. Подготовка угольных электродов

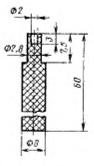
3.1.1. Электроды для анализа готовят угольных стержней. Форма и размеры электродов указаны на чертеже.

3.2. Подготовка растворов

3.2.1. Приготовление проявителя Проявитель готовят из равных объемов растворов I и II, имеющих следующий сос-TaB:

раствор I:


метол — 2 г,


гидрохинон — 10 г,

натрий серноватистокислый безводный -52 г.

вода дистиллированная — 1 дм³.

Навески растворяют в воде, доводят объем раствора водой до 1 дм3, перемешивают и, если нужно, фильтруют;

раствор II:

натрий углекислый безводный - 16 г,

калий бромистый - 2 г,

вода дистиллированная - 1 дм3.

Навески растворяют в воде, доводят объем раствора водой до 1 дм³, перемешивают и, если нужно, фильтруют.

3.2.2. Приготовление фиксажа

Раствор фиксажа имеет следующий состав:

натрий серноватистокислый — 250 г;

аммоний хлористый — 50 г;

вода дистиллированная — 1 дм3.

Навески растворяют в воде, доводят объем раствора водой до 1 дм³, перемешивают и, если нужно, фильтруют.

Взвешивание фотореактивов производят с погрешностью не

более 0,1 г.

3.3. Приготовление буферной смеси с окисью (IV) германия

Буферная смесь состоит из 77,68% угольного порошка, 22,22% углекислого стронция и 0,1% окири (IV) германия. Для более равномерного перемещивания окиси (IV) германия с угольным порошком и углекислым стронцием смесь готовят в три приема в соответствии с табл. 1 - 3.

Приготовление смеси 1

Таблица 1

Наименование реактива	Массован доля, %	Масса, г	
Окись (IV) германия Угольный порошок	1 99	0,1000 9,9000	

Приготовление смеси 2

Таблица 2

Наименование реактива	реактива Массовая доля, %	
		The state of the s
Смесь I Урольний порошок	30 70	3,0000 7,0000

Таблица 3

Приготовление смеси 3

Наименование реактива	Массовая доля, %	Macca, r	
Смесь 2	33,33	7,5000	
Угольный порощок	44,44	10,0000	
Углевислый стонций	22,22	5,0000	

Каждая смесь перемешивается в агатовой ступке в течение 2 ч с этиловым спиртом. Для проверки чистоты буферной смеси фотографируют ее спектр в условиях анализа (см. разд. 4). На спектрограмме должны отсутствовать аналитические линии определяемых элементов.

(Измененная редакция, Изм. № 1).

3.4. Приготовление буферной смеси с окисью (II) меди

Буферная смесь состоит из 69% угольного порошка, 30% углекислого стронция и 1% окиси меди. Для более равномерного перемешивания окиси меди с угольным порошком и углекислым стронцием буферную смесь готовят в два приема в соответствии с табл. За и 36.

Таблица За Приготовление смеси 4

Таблица 36 Поисотовление смеси 5

Try to o to o title to		Topic attraction desired a			
Наименова- ние реактива	Массовая доля, %	Масса, г	Напиенова-	Массоная доля, %	Macca, r
	1 1				
Окись (11)	1	, boss	Смесь 4	10	1,0000
меди Угольный	10	1,0000	Углекислый строиций	30	3.0000
порошок	90	9,0000	Угольный порошок	60	6,0000

(Введен дополнительно, Изм. № 1).

4. ПРОВЕДЕНИЕ АНАЛИЗА

4.1. Навеску каолина из пробы, подготовленной по п. 1.1, и образцы сравнения емешивают с буфером в соотношении 1:19 (0,0300 г каолина и 0,5700 г буферной смеси 3 или буферной смеси 5). Перемешивание производят в агатовой ступке с добавлением 5—10 см³ этилового спирта в течение 15 мин, затем подсушивают смесь под инфракрасной лампой или в сушильном шкафу при 105—110°С в течение 10 мин.

(Измененная редакция, Изм. № 1).

- 4.2. Смесью каолина с буфером, а также каждого образца сравнения с буфером наполняют по три электрода — десятикратным погружением их в смеси поступательно-вращательным движением.
- 4.3. Электрод со смесью каолина с буфером укрепляют в нижнем зажиме штатива, а конусообразный электрод в верхнем зажиме так, чтобы между электродами было расстояние 2 мм и конус верхнего электрода располагался строго над углублением нижнего электрода. Электрод с каолином является анодом.

- 4.4. Включают ток, верхний и нижний электроды сводят друг с другом и через 1 с электроды разводят на расстояние 2 мм. Во время съемки сохраняют постоянное расстояние между электродами.
- 4.5. На среднем конденсоре устанавливают прямоугольную диафрагму высотой 2 мм. Ширина щели спектрографа 0,015—0,020 мм. Ширина щели спектрографа и промежуточная диафрагма могут быть несколько изменены в соответствии с используемыми приборами. Сила тока дуги 12 А. Время экспозиции 60 с.
- 4.6. Каждую смесь каолина с буфером и образцы сравнения сжигают в разбивку по три раза на одной пластинке.
- 4.7. Фотопластинку обрабатывают в строго постоянных условиях:

температура проявителя — 20-22°C;

время проявления — согласно указанному на упаковке фотопластинок;

время закрепления — 10 мин.

Промывают фотопластинку в проточной воде в течение 15 мин, ополаскивают дистиллированной водой и сушат.

После обработки фотопластинки фотометрируют линии, указанные в табл. 4. Аналитические линии находят по атласу спектральных линий с помощью спектропроектора.

Таблица 4

	Длина водны внадитической дишин, им		
Определже- имв компо- нент	определяемого элемента	эдемента сравнения	Массоная доля окиси определяемого элемен та, в каслиме, %
Fe ₂ O ₃	Fe 287,793	Ge 270,906	От 0,1 по 1,5
Fe _v O _s	Fe 296,690	Ge 303,906	» 0,1 » 1,5
TiO ₂	Ti 308,802	Ge 303,906	» 0,1 » 1,0
TiO ₂	Ti 295,613	Ge 303,906	> 0.3 × 1.5
CaO	Ca 315,887	Ge 303,906	> 0,1 > 1,5
MgO	Mg 277,983	Ge 270,906	> 0.02 × 0.5
MnO	Mrt 280,106	Ge 270,906	> 0,001 > 0,03
CuO	Cu 324.754	Ge 303,906	≥ 0,0003 ≥ 0,01
Fe _z O _a	Fe 287,793	Cu 282,437	> 0,1 > 1,5
Fe ₂ O ₂	Fe 296,690	Cu 282,437	> 0,1 > 1,5
TiO _s	Ti 308,802	Cu 282,437	> 0,1 × 1,5
TiO,	Ti 295,613	Cu 282,437	> 0,3 > 1,5
CaO	Ca 317,933	Cu 282,437	> 0,1 > 1,5
MgO	Mg 277.983	Cu 282,437	» 0.02 » 0.5
MnO	Mn 280,106	Cu 282,437	» 0,001 » 0,03

5. ОБРАБОТКА РЕЗУЛЬТАТОВ

5.1. Разность почернений (\(\Delta\S\)) линии определяемого элемента и линии сравнения вычисляют по формуле

$$\Delta S = S_{onp} - S_{Ge}$$

где Sosp — почернение линии определяемого элемента;

S_{Ge} — почернение линии сравнения (германия).

5.2. Среднюю разность почернений (ΔS_{cp}) трех спектров вычисляют по формуле

$$\Delta S_{cp} = -\frac{\Delta S_1 + \Delta S_2 + \Delta S_3}{3}$$
,

где ΔS_1 , ΔS_2 , ΔS_3 - разности почернений соответственно трех спектров.

5.3. Градуировочные графики строят для всех стандартных образцов. Экстраполяция за пределы стандартных образцов не допускается. Градуировочные графики строят в координатах ΔS_{cp}—lgC,

где С — массовая доля определяемого окисла элемента в стандартных образцах в процентах.

 5.4. Массовую долю окислов элементов в каолине в процентах определяют по градуировочным графикам.

5.5. Допускаемые расхождения между результатами двух параллельных определений при доверительной вероятности P=0,95 указаны в табл. 5.

Таблица 5

Массовая доля окиси определнемого влемента в каолине, %		окиси определнемого в каолине, %	Допускаемое расхождение, %	
От	1,0	до 1,5	0.1	
*	0,5	> 1.0	0,1 0,07	
20	0,1	» 0,5	0,05 0,007	
26	0,01	» 0.1	0,007	
	0,001	» 0,01	0,001	
36	0.0003	> 0,001	0,0002	

Если расхождение между результатами двух параллельных определений превышает приведенную величину, определение повторяют на новых навесках.

За окончательный результат анализа принимают среднее арифметическое результатов двух параллельных определений.

ПРИЛОЖЕНИЕ Обязательное

ПРИГОТОВЛЕНИЕ ОБРАЗЦОВ СРАВНЕНИЯ ДЛЯ СПЕКТРАЛЬНОГО АНАЛИЗА КАОЛИНА

Для приготовления образцов сравнения каолина подбирают пробы с раз- с

личным содержанием примесей.

Для каждого определяемого элемента число образцов сравнения должно быть же менее пяти и они должны охватывать весь диапазон определяемых содержаний, а именю: массовая доля определяемого окнела в одном образце сравнения не должна отличаться от массовой доли примеси во втором, после-

дующем по содержанию образце сравнения, более чем в два раза

Пробы для приготовления образцов сравнения отбирают массой около 1 кг, просенвают через сито с сеткой № 0063 по ГОСТ 6613—73. Остаток на сите измельчают в агатовой ступке до полного прохождения через сито. Далее пробу тщательно перемешивают в течение 3—4 ч. Из подготовленной вробы квартованием отбирают частные пробы массой по 80—100 г каждая. Эти пробы подвергают химическому и спектральному анализу в двух-трех разных лабораторнях.

Новые образцы сравнения готоватся по мере необходимости. Срок год-

вости образцов сравнения — 5 лет.

Редактор Т. П. Шашина Технический редактор Э. В. Митяй Корректор С. И. Ковалева

Сдано в наб. 14.10.86 Подп. в неч. 20.02.87 0,75 усл. п. л. 0,75 усл. кр.-отг. 0,52 уч.-изд. л. Тираж 4000 Цена 3 коп.

Группа А59

Изменение № 2 ГОСТ 25567---82 Қаолин обогащенный. Метод спектрального анализа

Утверждено и введено в действие Постановлением Государственного комитета СССР по стандартам от 04.08.88 № 2840

Дата введения 01.01.89

Пункт 1.1. приложение. Заменить ссылку: ГОСТ 6613—73 на ГОСТ 6613—86. (Продолжение см. с. 86)

(Продолжение изменения к ГОСТ 25567-82)-

Пункт 2.1. Восьмой абзац коложить в новой редакции: «весы лабораторные 2-го класса точности с погрешностью измерения не более 0,0005 по ГОСТ 24104—80»;

заменять ссылку: ГОСТ 5.1177—71 на ГОСТ 25664—83. Пункт 4,2,1. Заменять ссылку: ГОСТ 18300—72 на ГОСТ 18300—87.

(HYC Nt 12 1988 r.)