ХЛЕБ И ХЛЕБОБУЛОЧНЫЕ ИЗДЕЛИЯ МЕТОДЫ ОПРЕДЕЛЕНИЯ МАССОВОЙ ДОЛИ ЖИРА

Издание официальное

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

хлеб и хлебобулочные изделия

Методы определения массовой доли жира

ΓΟCT 5668—68

Bread and bakery products.

Methods for determination of fat content

МКС 67.050 ОКСТУ 9109

Дата введения 1969-07-01

Настоящий стандарт распространяется на хлеб, булочные, бараночные, сухарные изделия, соломку и устанавливает методы определения массовой доли в них жира:

- а) экстракционный метод с предварительным гидролизом навески;
- б) рефрактометрический (ускоренный);
- г) бутирометрический (ускоренный).

Применение методов предусматривается в стандартах и технических условиях, устанавливающих технические требования на указанные изделия.

(Измененная редакция, Изм. № 1, 4).

1 ОТБОР ОБРАЗЦОВ (ПРОБ) И ПОДГОТОВКА ИХ К ИСПЫТАНИЮ

- Отбор образцов (проб) производят по ГОСТ 5667, ГОСТ 7128, ГОСТ 8494 и ГОСТ 11270. (Измененная редакция, Изм. № 4).
- 1.2 Из лабораторного образца, отобранного для общего анализа, выделяют для определения жира не менее 300 г продукта.

В изделиях, у которых мякиш отграничен и легко отделяется от корки, например, булки, халы, сдоба (за исключением слойки), анализируют только мякиш этих изделий. В остальных изделиях (баранки, сухари и т. п.) анализируют весь образец (с коркой).

Из изделий удаляют все включения (повидло, варенье, изюм и пр.) и поверхностную отделку (обсыпку сахаром, маком и т. д), тщательно измельчают, перемешивают и помещают в банку с притертой пробкой.

2 ЭКСТРАКЦИОННЫЙ МЕТОД С ПРЕДВАРИТЕЛЬНЫМ ГИДРОЛИЗОМ НАВЕСКИ

Метод основан на извлечении жира из предварительно гидролизованной навески изделия растворителем и определении количества жира взвешиванием после удаления растворителя из определенного объема полученного раствора. Метод применяется при возникновении разногласий в оценке качества.

(Измененная редакция, Изм. № 1).

2.1 Аппаратура, материалы и реактивы:

весы лабораторные общего назначения с допускаемой погрешностью взвешивания ± 0,05 г; часы;

электроплитка по ГОСТ 14919;

центрифуга лабораторная;

эксикатор по ГОСТ 25336;

шкаф сушильный, обеспечивающий температуру нагрева (105 ± 2) °C:

термометр ртутный стеклянный лабораторный по ГОСТ 28498;

колбы конические Кн исполнений 1 и 2, TC по ГОСТ 25336, вместимостью 100, 250 и 300 см³;

колбы мерные исполнений 1 и 3, 2-го класса точности, XC по ГОСТ 1770, вместимостью 100 и 250 см 3 .

воронки стеклянные диаметром не менее 50 мм по ГОСТ 25336;

капельница исполнения 2, XC по ГОСТ 25336, вместимостью 50 см3;

пипетки исполнений 2 и 6, 2-го класса точности вместимостью 5 и 10 см³ и исполнения 2, 2-го класса точности вместимостью 20 и 50 см³:

холодильники стеклянные по ГОСТ 25336;

баня воляная:

вата медицинская гигроскопическая по ГОСТ 5556;

вода дистиллированная по ГОСТ 6709-72 или вода питьевая по ГОСТ 2874*;

кислота соляная, х. ч. или ч. д. а. по ГОСТ 3118, раствор массовой долей 1.5% (35,1 см³ концентрированной кислоты / дм³);

кислота серцая, х. ч. или ч. д. а. по ГОСТ 4204, раствор массовой долей 5 % (29,4 см 3 концентрированной кислоты / дм 3);

хлороформ по ГОСТ 20015;

дихнорэтан технический по ГОСТ 1942, плотностью 1,2520-1,2537;

аммиак водный, х. ч. или ч. д. а. по ГОСТ 3760;

фенолфталеин, спиртовой раствор массовой долей 1 % (1 г фенолфталеина растворяют в 100 см³ этилового спирта, массовой долей 96 %).

Допускается применение аналогичного отечественного и импортного оборудования, лабораторной посуды и реактивов, метрологические характеристики которых соответствуют указанным параметрам.

(Измененная редакция, Изм. № 4).

2.2 Проведение испытания

2.2.1 Навеску продукта в 10 г (при содержании жира в изделиях свыше 10 % навеска может быть уменьшена до 5 г), взвешенную с погрешностью не более 0,05 г, помещают в плоскодонную колбу вместимостью примерно 300 см³, приливают 100 см³ раствора соляной кислоты массовой долей 1,5 % (или 100 см³ раствора серной кислоты массовой долей 5 %), кипятят в колбе с обратным холодильником на слабом огне 30 мин. Затем колбу охлаждают водой до комнатной температуры, приливают в колбу 50 см³ хлороформа, плотно закрывают хорошо пригнанной пробкой, энергично взбалтывают в продолжение 15 мин, затем выливают содержимое в центрифужные пробирки и центрифугируют в продолжение 2—3 мин при 3000 об/мин. В пробирке образуется три слоя. Пипеткой, снабженной резиновой грушей, удаляют верхний водный слой и отбирают хлороформенный раствор жира и фильтруют его в сухую колбу через небольшой ватный тампон, вложенный в узкую часть воронки, причем кончик пипетки должен при этом касаться ваты. 20 см³ фильтрата помещают в предварительно доведенную до постоянной массы и взвешенную колбу вместимостью примерно 100 см².

Отбор и фильтрация должны производиться в течение 2 мин. Хлороформ из колбы отгоняют на горячей бане, пользуясь холодильником. Оставшийся в колбе жир сушат до постоянной массы (обычно 1-1,5 ч) при температуре 100-105 °C, охлаждают в эксикаторе (20 мин) и взвешивают колбу на аналитических весах.

Допускается следующий способ расслаивания.

После гидролиза в охлажденную колбу добавляют 5 см³ раствора аммиака (плотность 0,91), 50 см³ хлороформа, затем содержимое колбы взбалтывают в течение 15 мин и оставляют на 1 ч для отстаивания. За это время полностью отделяется и четко видей нижний хлороформенный слой. Если расслаивания не произойдет, добавляют еще 2—3 см³ аммиака, следя за тем, чтобы реакция по фенолфталенну оставалась кислой.

После расслаивания отбор, фильтрацию, отгон хлороформенного слоя и высушивание жира ведут, как указано выше.

Примечания:

Отгон и фильтрацию растворителя проводят под вытяжкой.

 При отсутствии хлороформа допускается применение дихлорэтана, который следует хранить в темных склянках.

(Измененная редакция, Изм. № 2, 4).

2.3 Обработка результатов

(Измененная редакция, Изм. № 1).

На территории Российской Федерации действует ГОСТ Р 51232—98 (здесь и далее).

2.3.1 Массовую долю жира (X) в процентах в пересчете на сухое вещество вычисляют по формуле

$$X = \frac{(m-m_1) \cdot 100 \cdot 50}{20 \cdot m_2} \cdot \frac{100}{100-W} \, ,$$

где т - масса колбы с высушенным жиром, г;

т -- масса пустой колбы, г;

50 — объем хлороформа, взятого для растворения жира, см³;

т. – масса навески испытуемого вещества, 1;

20 — объем хлороформенного раствора жира, взятого для отгона, см³;

 — массовая доля влаги в испытуемом продукте, определенная стандартным методом (ГОСТ 21094).

Вычисление производят до второго десятичного знака с последующим округлением до первого лесятичного знака.

За окончательный результат принимают среднее арифметическое двух параллельных определений, допускаемые расхождения между которыми не должны превышать 0,5 % в одной лаборатории и 1 % в разных.

(Измененная редакция, Изм. № 1, 2, 4).

З ЭКСТРАКЦИОННО-ВЕСОВОЙ МЕТОД (ускоренный)

Метод основан на воздействии безводной углекислой соды (Na_2CO_3) на анализируемый образец, экстракции жира в специальной ступке-экстракторе при интенсивном растирании в органическом растворителе и фильтрации раствора под нагнетанием воздуха.

Содержание количества жира определяют взвешиванием после удаления растворителя из оп-

ределенного объема полученного раствора.

3.1 Аппаратура, материалы и реактивы:

прибор специальный, состоящий из металлической ступки экстрактора с пестиком и штативом, фильтровальной трубки и трубки для нагнетания воздуха, закрепленный в резиновой пробке:

весы лабораторные общего назначения с допускаемой погрешностью взвешивания \pm 0,05 г; баня водяная или песочная:

часы:

колбы конические К н исполнений 1, 2, ТХС по ГОСТ 25336, вместимостью 50 см³ или чашки алюминиевые (типа алюминиевых бюкс, применяемых для определения влажности хлеба);

пипетки исполнений 2, 6, 2-го класса точности вместимостью 5 и 10 см³ и исполнения 2, 2-го класса точности вместимостью 50 см³;

бюретки исполнений 1, 2, 3, 2-го класса точности, вместимостью 5, 10 и 50 см³;

колбы мерные исполнений 1, 2, 2-го класса точности, XC, вместимостью 5, 10 и 50 см³ по ГОСТ 1770;

холодильники стеклянные по ГОСТ 25336;

две резиновые нагнетательные груши с отверстиями в вогнутой твердой части (диаметр отверстия 3 мм):

бумага фильтровальная лабораторная по ГОСТ 12026;

вата медицинская гигроскопическая по ГОСТ 5556;

натрий углекислый по ГОСТ 83, х. ч., высущенный при 100 °С;

хлороформ технический:

вода дистиллированная по ГОСТ 6709 или вода питьевая по ГОСТ 2874.

Допускается применение аналогичного отечественного и импортного оборудования, лабораторной посуды и реактивов, метрологические характеристики которых соответствуют указанным параметрам.

(Измененная редакция, Изм. № 4).

3.2 Проведение испытания

3.2.1 Навеску продукта в 10 г (при анализе изделий с высоким содержанием жира — 5 г), взвешенную с погрешностью не более 0,05 г, помещают в ступку-эксикатор, добавляют туда 5 г безводной соды (допускается отмеривание соды по объему заранее калиброванной вместимостью) и 50 см³ хлороформа и тщательно растирают (круговыми движениями) металлическим пестиком в течение 5 мин.

При анализе сухарей, баранок, соломки необходимо предварительно слегка растереть навеску в ступке-экстракторе с 3 см³ дистиллированной воды и затем уже добавлять соду и проводить извлечение жира указанным способом.

По окончании растирания раствор фильтруют. Для этого из ступки-экстрактора вынимают пестик и плотно закрывают ее пробкой, снабженной трубкой для фильтрования и короткой изогнутой трубкой для нагнетания воздуха. Трубка для фильтрования при помощи резиновой пробки соединена (верхним концом) с пипеткой объемом 10 или 5 см³. Пипетка проходит внутри трубки до ее нижнего конца, заканчивающегося расширением для укрепления бумажного фильтра с помощью навинчивающегося кольца. Диаметр фильтра должен быть равен внутреннему диаметру воронки. При использовании неплотной фильтровальной бумаги делается двуслойный бумажный фильтр.

Трубку для фильтрования укрепляют так, чтобы ее нижний конец находился на расстоянии около 1 см от дна ступки-экстрактора. Конец пипетки должен быть укреплен на 1—1,5 мм выше плоскости бумажного фильтра (положение трубки для фильтрования и пипетки фиксируется), что облегчает и ускоряет процесс фильтрования. Под действием воздуха, нагнетаемого с помощью резиновой груши через короткую согнутую трубку, раствор жира проходит через фильтр и поступает в пипетку. Пипеткой отбирают 10 или 5 см³ раствора жира и переносят в предварительно высушенную и взвешенную коническую колбу вместимостью около 50 см³. Хлороформ из колбы отгоняют на песочной или водяной бане, пользуясь холодильником. Оставшийся в колбе жир сушат до постоянной массы 1—1,5 ч при 100—105 °C, охлаждают в эксикаторе и взвешивают.

При ускоренном методе высушивания 10 или 5 см³ экстракта жира, отобранного пипеткой, помещают в предварительно высушенные и взвешенные на аналитических весах алюминиевые чашки. Хлороформ выпаривают на песочной бане с температурой 140—150 °C. Выпаривание хлороформа и высушивание жира проводят в течение 10 мин. В тех случаях, когда к моменту помещения чашки на песочную баню хлороформ из нее уже полностью испарился, нагревание проводят в течение 4 мин. После этого чашки с содержимым помещают в эксикатор, охлаждают до комнатной гемпературы и взвещивают.

(Измененная редакция, Изм. № 1, 2, 4).

3.3 Обработка результатов

(Измененная редакция, Изм. № 1).

3.3.1 Массовую долю жира (Х) в процентах вычисляют по формуле

$$X = \frac{m_{\rm t} \cdot 50 \cdot 100}{V \cdot m_{\rm b}} \cdot \frac{100}{100 - W}, \label{eq:X}$$

где m₁ - масса сухого жира, г;

т. — масса навески испытуемого продукта, г;

V — объем раствора, взятый для определения жира, см³;

 — массовая доля влаги в испытуемом продукте, определенная стандартным методом (ГОСТ 21094), %.

Вычисление производят до второго десятичного знака с последующим округлением до первого десятичного знака.

За окончательный результат принимают среднее арифметическое двух параллельных определений, допускаемые расхождения между которыми не должны превышать 0,5 % в одной лаборатории и 1 % в разных.

П р и м е ч а н и е — Всю работу с органическими растворителями проводят в вытяжном шкафу или специальной хорошо вентилируемой камере.

(Измененная редакция, Изм. № 1, 2, 4).

4 РЕФРАКТОМЕТРИЧЕСКИЙ МЕТОД (ускоренный)

Метод основан на извлечении жира из навески изделия соответствующим растворителем. Содержание жира в изделии определяют по разности коэффициентов преломления растворителя и раствора жира в растворителе. 4.1 Аппаратура, материалы и реактивы:

пикнометр стеклянный типа ПМЖ, вместимостью 25-50 см3 по ГОСТ 22524;

пипетки исполнения 4, вместимостью 2 см 3 с ценой деления 0.02 см 3 и исполнения 6, вместимостью 5 см 3 с ценой деления 0.05 см 3 ,

воронки стеклянные диаметром не более 30 мм по ГОСТ 25336;

стаканы стеклянные по ГОСТ 25336, вместимостью 25-50 см³;

ступка фарфоровая диаметром не более 7 см с пестиком или фарфоровая чашка по ГОСТ 9147; бумага фильтровальная по ГОСТ 12026;

вата медицинская гигроскопическая по ГОСТ 5556:

натрий углекислый безводный по ГОСТ 83, х. ч.;

кислота уксусная по ГОСТ 61, х. ч. массовой долей 80 % беззольные фильтры;

α-бромнафталин с коэффициентом преломления около 1,66;

а-хлорнафталин с коэффициентом преломления около 1,63;

баня водяная;

вода дистиллированная по ГОСТ 6709 или вода питьевая по ГОСТ 2874.

Допускается применение аналогичного отечественного и импортного оборудования, лабораторной посуды и реактивов, метрологические характеристики которых соответствуют указанным параметрам.

(Измененная редакция, Изм. № 3, 4).

4.2 Подготовка к испытанию

4.2.1 Определяют коэффициент преломления α-бромнафталина или α-хлорнафталина при температуре 20 °C, наносят 1—2 капли этого растворителя на призму рефрактометра.

(Измененная редакция, Изм. № 4).

4.2.2 Плотность растворителей (ρ) в г/см³ при 20 °C определяют пикнометром и вычисляют по формуле

 $\rho = \frac{m}{q}$,

где q — водное число пикнометра, см³;

т — масса растворителя, г.

Взвешивание производят с погрешностью не более 0,005 г. Расхождение между параллельными взвешиваниями должно быть не более 0,015 г.

(Измененная редакция, Изм. № 2, 3, 4).

4.2.3 Пипетку вместимостью 2—5 см³ калибруют по растворителю, отмеривая ею соответствующий объем растворителя и взвешивая его в стаканчике с погрешностью не более 0,005 г. Расхождение между параллельными взвешиваниями должно быть не более 0,015 г.

Из трех взвешиваний берут среднее арифметическое и вычисляют объем пипетки (V) в см³ по формуле

 $V = \frac{m}{\rho}$

где m — масса растворителя, соответствующая объему взятой пипетки, г;

р – плотность растворителя при температуре 20 °С, определенная по п. 4.2.2, г/см³.

(Измененная релакция, Изм. № 2, 4).

4.3 Проведение испытания

4.3.1 Хорошо измельченную навеску хлебобулочных изделий около 2 г отвешивают с погрешностью не более 0,05 г и помещают в маленькую ступку. Затем приливают 4 см³ растворителя, который набирается калиброванной пипеткой с помощью маленькой груши. Все содержимое ступки энергично растирают в течение 3 мин. Смесь переносят из ступки на маленький складчатый фильтр. Первые 2—3 капли фильтрата отбрасывают, а последующий фильтрат в количестве 2—3 капель помещают на призму рефрактометра и определяют коэффициент преломления.

(Измененная редакция, Изм. № 2).

4.3.2 Бараночные и сухарные изделия, а также хлебобулочные изделия из муки с «крепкой» клейковиной анализируют следующим образом: хорошо измельченную навеску около 2 г отвешивают с погрешностью не более 0,05 г и помещают в фарфоровую ступку (при отсутствии ступки можно пользоваться маленькой фарфоровой чашкой). Затем, прибавив около 2 г чистого сухого

C. 6 FOCT 5668-68

песка, добавляют 2 см³ уксусной кислоты указанной концентрации, все хорошо растирают в течение 2 мин и помещают на кипящую водяную баню на 3 мин. При анализе изделий с низкой влажностью (сухари, сушки и др.) перед добавлением песка измельченную навеску смачивают 1 см³ воды.

Охладив массу, приливают точно 4--5 см³ растворителя и вновь все растирают в течение 3 мин, затем добавляют 2 г безводного углекислого натрия, перемешивают, смесь из ступки переносят на складчатый фильтр и фильтруют в стаканчик. Из полученного фильтрата наносят 2-3 капли на призму рефрактометра и определяют коэффициент преломления.

(Измененная редакция, Изм. № 2, 4).

4.3.3 Определение коэффициента преломления проводят при $(20 \pm 0,2)$ °C или при любой комнатной температуре. В последнем случае показатель преломления раствора приводят к температуре 20 °C путем внесения поправки по табл. 1.

Габлица 1

Температурные поправки при определении показателей преломления раствора жира в бромнафталине-альфа

Темпера- тура, 'С'	Поправка	Темпера- тура, "С	Поправка	Темпера- тура, "С	Поправка	Темпера- тура, "С	Поправка	Темпера- тура, 'С	Поправк
			Отнять	от показате	ля преломл	ения			
15,0	0,0022	16,0	0,0018	17,0	0,0013	18,0	0,0009	19.0	0.0004
1	0,0022	1	0,0017	1	0,0013	1	0,0008	1	0,0004
2	0,0021	2	0,0017	2	0.0012	2	8000,0	2	0,0004
3	0,0021	3	0.0016	3	0,0012	3	0,0007	3	0,0003
4	0,0020	4	0,0016	4	0,0011	4	0.0007	4	0,0003
5	0,0020	5	0,0016	5	0.0011	5	0,0007	5	0,0002
6	0,0019	6	0,0015	6	0,0011	6	0,0006	6	0,0002
7	0,0019	7	0,0015	7	0,0010	7	0,0006	7	0,0001
8	0,0018	8	0.0014	8	0.0010	8	0,0005	8	0,0001
9	0,0018	9	0,0014	9	0,0009	9	0,0005	9	0,0000
			Прибави	ть к показа	телю прело	мления			
20,0	0,0000	22,0	0,0009	24,0	0,0018	26,0	0,0026	28,0	0,0035
1	0,0000	1	0,0009	1	0,0018	1	0,0027	1	0,0036
2	1000,0	2	0,0010	2	0,0018	2	0.0027	2	0,0036
3	0,0001	3	0,0010	3	0,0019	3	0,0028	3	0,0037
4	0,0002	4	0,0011	4	0.0019	4	0.0028	4	0,0037
5	0,0002	5	0,0011	5	0,0020	5	0.0029	5	0,0037
6	0,0003	6	0.0011	6	0,0020	6	0.0029	6	0,0038
7	0,0003	7	0.0012	7	0,0021	7	0,0029	7	0,0038
8	0,0004	8	0,0012	8	0,0021	8	0.0030	8	0,0039
9	0,0004	9	0.0013	9	0,0022	9	0.0030	9	0,0039
21,0	0,0004	23.0	0,0013	25,0	0.0022	27,0	0,0031	29.0	0,0040
1	0,0005	1	0.0014	1	0,0022	1	0,0031	1	0,0040
2	0,0005	2	0,0014	2	0,0023	2	0,0032	2	0,0040
3	0,0006	3	0,0015	3	0.0023	3	0,0032	3	0,0041
4	0,0006	4	0,0015	4	0,0024	4	0,0033	4	0,0041
5	0,0007	5	0,0015	5	0.0024	5	0,0033	5	0,0042
6	0,0007	6	0.0016	6	0.0025	6	0,0033	6	0,0042
7	0,0007	7	0,0016	7	0,0025	7	0,0034	7	0,0043
8	8000,0	8	0,0017	8	0,0026	8	0,0034	8	0,0043
9	0.0008	9	0,0017	9	0.0026	9	0.0035	9	0.0044

Отсчет показателя преломления раствора жира можно также производить при любой комнатной температуре, без учета поправки на температуру, при условии одновременного определения показателя преломления растворителя при той же температуре. 4.4 Обработка результатов

4.3.3, 4.4 (Измененная редакция, Изм. № 1).

4.4.1 Массовую долю жира (X) в процентах в пересчете на сухое вещество вычисляют по формуле

$$X = \frac{V_{\rm p} \, \sigma_{\rm w}}{m} \left(\frac{H_{\rm p} - H_{\rm pw}}{H_{\rm pw} - H_{\rm w}} \right) \cdot 100 \cdot \frac{100}{100 - W},$$

где V_{σ} — объем растворителя, взятый для извлечения жира, см³,

относительная плотность жира при 20 °С, г/см³;

П – коэффициент предомления растворителя;

 $\Pi_{ox}^{\ \ r}$ — коэффициент преломления раствора жира в растворителе;

п. – коэффициент преломления жира;

т – масса продукта, г;

W — массовая доля влаги в испытуемом продукте, определенная стандартным методом (ГОСТ 21094), %.

Вычисления производят до второго десятичного знака с последующим округлением до первого десятичного знака,

За окончательный результат принимают среднеарифметическое трех параллельных определений, допускаемые расхождения между которыми не должны превышать 0,5 % в одной лаборатории и 1 % в разных.

При вычислении процента содержания жира пользуются показателями предомления и плотности жиров, указанными в табл. 2.

Габлица 2

Наименование жира	Коэффициент преломления	Плотность	
Кунжутное масло	1,4730	0,919	
Подсолнечное масло	1,4736	0,924	
Коровье масло	1,4605	0.920	
Маргарин	1,4690	0,928	
Арахисовое масло	1,4696	0.914	
Горчичное масло	1,4769	0,918	
Кондитерский жир	1,4674	0.928	
Соевое масло	1,4756	0,922	
Кукурузное масло	1,4745	0.920	
Концентраты фосфатидные	1,4746	0,922	
Кулинарный жир	1,4724	0.926	
Свиной топленый жир	1,4712	0.917	

Примечания

1 Если в исследуемом изделии находится неизвестный жир или имеется смесь жиров, поступают следующим образом: 5—10 г измельченного изделия заливают трехкратным количеством растворителя (хлороформа, тетрахлоруглерода и др.), взбалтывают в течение 15 мин, вытяжку фильтруют в колбочку, растворитель полностью отгоняют, остаток подсушивают и определяют коэффициент преломления смеси жиров или неизвестного жира.

2 Для смеси жиров или для неизвестного жира плотность принимается равной 0,925.

3 При хорошем растирании навески с растворителем в ступке, когда смесь перенесена на фильтр, разрешается стекающие из воронки капли раствора жира в растворитель наносить на призму рефрактометра, не дожидаясь, когда профильтруется вся смесь.

(Измененная редакция, Изм. № 1, 2, 4).

4.4.2 Вся работа с органическими растворителями проводится в вытяжном шкафу или хорошо вентилируемой камере.

5 БУТИРОМЕТРИЧЕСКИЙ МЕТОД (ускоренный)

Метод основан на растворении исследуемой навески изделия в растворе серной кислоты с массовой долей 60 % и отделении слоя жира в молочном бутирометре центрифугированием в присутствии изоамилового спирта, который образует с серной кислотой изоамилово-серный эфир, уменьшающий величину поверхностного натяжения жировых шариков и способствующий слипанию их в единый жировой слой.

Объем выделившегося жира измеряют в градуированной части бутирометра.

5.1 Аппаратура, материалы и реактивы:

электроплитка бытовая по ГОСТ 14919 или других марок;

весы лабораторные общего назначения с допускаемой погрешностью взвешивания ± 0,05 г; бутирометр (жиромер) для молока и молочных продуктов по ГОСТ 23094;

центрифуга для определения массовой доли жира в молоке и молочных продуктах или центрифуга с механическим приводом с угловой скоростью не менее 1000 об/мин;

термометры ртутные стеклянные лабораторные от 0 до 100 °С по ГОСТ 28498;

часы;

баня водяная с гнездами для бутирометров;

штатив для бутирометров:

стаканчики фарфоровые вместимостью 25 см3 по ГОСТ 9147;

пробки резиновые для жиромеров;

пипетки градуированные исполнений 4, 5 вместимостью I см³ и исполнений 6, 7 вместимостью 10 см³:

палочки стеклянные;

кислота серная, х. ч. или ч. д. а. по ГОСТ 4204, раствор массовой долей 60% (512,7 см³ концентрированной кислоты/дм³);

спирт изоамиловый, ч. д. а. по ГОСТ 5830;

вода дистиллированная по ГОСТ 6709.

Допускается применение аналогичного отечественного и импортного оборудования, лабораторной посуды и реактивов, метрологические характеристики которых соответствуют указанным параметрам.

5.2 Проведение анализа

Две навески продукта массой в 2,0 г каждая помещают в фарфоровые стаканчики и заливают 9 см³ раствора серной кислоты.

Стаканчики погружают в водяную баню с температурой 80 °C и растворяют навеску в серной кислоте в течение 20 мин при периодическом перемешивании стеклянной палочкой.

После растворения навески темную жидкость переносят в молочные бутирометры, смывая остатки из стаканчика с помощью 10 см³ раствора серной кислоты.

В бутирометры осторожно (чтобы не замочить горлышко) приливают по 1 см³ изоамилового спирта, плотно закрывают резиновыми пробками, плавно перемешивают в течение 3 мин и помещают в гнезда водяной бани с температурой 80 °C на 5 мин (пробками вниз).

По истечении 5 мин бутирометры вынимают из водяной бани, размещают в молочной центрифуге (пробками к периферии) и центрифугируют 5 мин. После центрифугирования бутирометры снова помещают на 5 мин в водяную баню с температурой 80 °С (пробками вниз), после чего вынимают и отмечают высоту желтого жирового слоя над темной жидкостью по числу малых делений градуированной части бутирометра.

- 5.3 Обработка результатов
- 5.3.1 Массовую долю жира (X) в процентах в пересчете на сухое вещество вычисляют по формуле

$$X = \frac{n \cdot 0.01133 \cdot 100 \cdot 100}{m(100 - W)},$$

где п - высота жирового слоя в бутирометре по числу малых делений;

0,01133 — количество жира, соответствующее одному малому делению бутирометра, г;

W — массовая доля влаги в испытуемом продукте, определенная стандартным методом (ГОСТ 21094), %;

т — масса навески испытуемого продукта, г;

5.3.2 Для удобства и ускорения расчета можно использовать данные табл. 3.

Таблипа 3

Показание бутирометра	Массовая доля жира Х•, %	Показание бугирометра	Массовая доля жира X_1 , %	Показание бутирометра	Массовая доля жира $X_{\mathfrak{g}}, \ \mathfrak{F}$	Показание бутирометра	Массовая доля жира X _t . %
1	0,57	11	6,23	21	11,90	31	17,56
2	1,13	12	6,80	22	12,46	32	18,13
3	1,70	13	7,36	23	13,03	33	18,69
4	2,27	14	7,93	24	13,60	34	19,26
5	2,83	15	8,50	25	14,16	35	19,82
6	3,40	16	9,06	26	14,73	36	20,39
7	3,96	17	9,63	27	15,29	37	20,96
8	4,53	18	10,19	28	15,86	38	21,53
9	5,10	19	10,76	29	16,42	39	22,09
10	5,66	20	11,33	30	17,00	40	22,66

По найденному значению X_1 определяют массовую долю жира (X) в процентах в пересчете на сухое вещество по формуле

$$X = \frac{X_1 \cdot 100}{100 - W}$$

где X_1 — массовая доля жира, %, найденная по табл. 3; W — массовая доля влаги в испытуемом продукте, определенная стандартным методом (FOCT 21094), %.

- 5.3.3 Вычисление производят до второго десятичного знака с последующим округлением до первого десятичного знака. За окончательный результат принимают среднее арифметическое двух параллельных определений, допускаемые расхождения между которыми не должны превышать 0,5 % в одной лаборатории и 1 % — в разных.
- 5.3.4 Работа с изоамиловым спиртом проводится в вытяжном шкафу или хорошо вентилируемой камере.

Разд. 5 (Введен дополнительно, Изм. № 4).

C. 10 FOCT 5668-68

ИНФОРМАЦИОННЫЕ ДАННЫЕ

- РАЗРАБОТАН И ВНЕСЕН Всесоюзным научно-исследовательским институтом хлебопекарной промышленности
- 2 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Комитетом стандартов, мер и измерительных приборов при Совете Министров СССР 15.07.68
- 3 B3AMEH FOCT 5668-51

4 ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер лункта	Обозначение НТД, на который дана ссылка	Номер пункта	
FOCT 61-75	4.1	ГОСТ 7128—91	1.1	
FOCT 83-79	3.1; 4.1	ГОСТ 8494—96	1.1	
ГОСТ 1770-74	2.1; 3.1	ΓΟCT 914780	4.1; 5.1	
ГОСТ 1942-86	2,1	ΓΟCT 11270-88	1.1	
ΓOCT 2874—82	2.1; 3.1; 4.1	ΓΟCT 12026—76	3.1; 4.1	
FOCT 3118-77	2,1	ГОСТ 14919—83	2.1; 5.1	
ГОСТ 3760—79	2.1	ΓΟCT 20015—88	2.1	
FOCT 420477	2.1; 5.1	ΓΟCT 21094—75	2,3.1; 3,3.1; 4,4.1	
ГОСТ 5556—81	2.1; 3.1; 4.1		5.3.1; 5.3.2	
FOCT 5667-65	1.1	FOCT 22524-77	4.1	
ГОСТ 5830—79	5.1	ГОСТ 23094—78	5.1	
FOCT 6709-72	2,1; 3,1; 4,1; 5,1	ΓΟCT 25336—82	2.1; 3.1; 4.1	
		ΓΟCT 2849890	2.1; 5.1	

- 5 Ограничение срока действия снято Постановлением Госстандарта СССР от 27.11.91 № 1816
- 6 ИЗДАНИЕ с Изменениями № 1, 2, 3, 4, утвержденными в декабре 1982 г., июле 1985 г., ноябре 1986 г., ноябре 1991 г. (ИУС 4—83, 10—85, 2—87, 3—92)

5668-68