МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

СПЛАВЫ ПАЛЛАДИЕВО-ИРИДИЕВЫЕ

Методы спектрального анализа

ГОСТ 12550.2—82

Palladium-iridium alloys. Methods of spectrografic analysis

ОКСТУ 1709

Дата введения 01.01. 84

Настоящий стандарт устанавливает спектральный метод определения платины, родия, золота и железа в палладиево-иридиевых сплавах (при массовой доле платины и родия от 0,02 до 0,40 % каждого, золота от 0,01 до 0,20 % и железа от 0,02 до 0,20 %).

Метод основан на измерении интенсивности линий примесей в дуговом спектре. Количественную оценку массовой доли примесей устанавливают градуировкой при помощи стандартных образцов.

1. ОБШИЕ ТРЕБОВАНИЯ

Общие требования к методу анализа — по ГОСТ 22864.

1.2. Числовое значение результата анализа должно оканчиваться цифрой того же разряда, что и нормируемый показатель марочного состава.

(Введен дополнительно, Изм. №1).

2. АППАРАТУРА, РЕАКТИВЫ И РАСТВОРЫ

Спектрограф кварцевый средней дисперсии.

Генератор дуги переменного тока.

Ослабитель трехступенчатый.

Микрофотометр.

Зажимы (электрододержатели).

Стандартные образцы предприятия.

Электроды, изготовленные из спектрально-чистых углей диаметром 6 мм, заточенные на полусферу или усеченный конус с площадкой диаметром 1,5 — 2 мм.

Станок для заточки угольных электродов.

Фотопластинки спектральные типа II, чувствительностью 10 — 15 условных единиц.

Проявитель № 1 и фиксаж.

Кислота соляная по ГОСТ 3118, разбавленная 1: 1.

(Измевенная редакция, Изм. №1).

3. ПОДГОТОВКА К АНАЛИЗУ

Образцы для анализа должны быть в виде кусков металла массой 40 — 70 г, с площадкой размером 300 — 400 мм², зачищенной напильником.

Поверхность образдов для удаления поверхностных загрязнений кипятят в соляной кислоте (1:1) в течение 3 мин, промывают водой и сущат.

4. ПРОВЕЛЕНИЕ АНАЛИЗА

Спектры фотографируют при ширине щели спектрографа 0,015 мм, расстоянии между электродами 1,5 мм, силе тока 5А, экспозиции 30 с, через трехступенчатый ослабитель.

Анализируемые и стандартные образцы служат нижними электродами. В качестве верхних

электродов применяют угольные стержни, заточенные на полусферу или усеченный конус.

Вместе с анализируемыми образцами на одной фотогластинке фотографируют спектры стандартных образцов.

Для каждого анализируемого и стандартного образца получают три параллельных спектрограм-

мы.

Фотопластинку проявляют в течение 3 — 6 мин при температуре проявителя 20 °C. Проявленную фотопластинку ополаскивают в воде, фиксируют, промывают в проточной воде, высушивают и фотометрируют.

(Измененная редакция, Изм. №1).

5. ОБРАБОТКА РЕЗУЛЬТАТОВ

Длины воли аналитических спектральных линий приведены в таблице.

Определяемый элемент	Длина волны линии определяемого элемента, им	Элемент сравнения	Длина волны линии элемента сравнения, им
Родий Платина	339,68 270,24	Иркдий	333,42 270,46 260,82
Железо Золото	259,84 267,59		267,36

Определение массовых долей элементов ведут по методу "трех эталонов" с объективным фотометрированием. Строят градуировочные графики для каждого определяемого элемента. По оси ординат откладывают значения разности почернений линии определяемого и основного элемента. а по оси абсцисс — значения логарифмов концентрации стандартных образцов.

5.2. Сходимость метода характеризуется относительным стандартным отклонением S_N , равным 0.15.

За окончательный результат анализа принимают среднее арифметическое трех параллельных измерений при выполнении условия:

$$(X_{\text{max}} - X_{\text{min}}) \le 3 \cdot S_N \cdot \overline{X}_n$$

где X_{\max} — наибольший результат параллельных измерений; X_{\min} — наименьший результат параллельных измерений; S_N — относительное стандартное отклонение, характеризующее сходимость измерений; X_n — среднее арифметическое, вычисленное из n параллельных измерений (n=3).

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТАН И ВНЕСЕН Министерством цветной металлургии СССР

РАЗРАБОТЧИКИ

- А.А. Куранов, канд.техн. наук; Н.И. Тимофеев, канд.техн. наук; Г.С. Хаяк; Н.С. Степанова; Н.Д. Сергиенко, канд.хим. наук; А.А. Осинцева; Т.И. Беляева; Е.Е. Сафонова
- УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 22.09.82 № 3703
- ВЗАМЕН 12550—67 в части раздела 3
- 4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер раздела, пункта		
FOCT 3118—77 FOCT 22864—83	2 1.1		

- Ограничение срока действия сиято по протоколу № 3—93 Межгосударственного Совета по стандартизации, метрологии и сертификации (ИУС 5—6—93)
- 6. ПЕРЕИЗДАНИЕ (декабрь 1998 г.) с Изменением № 1, утвержденным в апреле 1988 г. (ИУС 7-88)

Редактор В.Н. Копысов Технический редактор Л.А. Кузнецова Корректор В.С. Черная Компьютерная верстка С.В. Рябовой

Изд. лиц. № 021007 от 10.08.95, Сдано в набор 11.02.99. Подписано в печать 05.03.99. Усл. печ.л. 0,93. Уч. над.л. 0,63. Тираж 106 экз. С 2166. Зак. 194.