ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА СС

СПЛАВЫ И ЛИГАТУРЫ РЕДКИХ МЕТАЛЛОВ

Спектральный метод определения кремния, железа, алюминия, титана и кальция в сплавах на основе ниобия

FOCT 25278.II—82

Alloys and foundry alloys of rare metals. Spectral method for determination of silicon, iron, aluminium, titanium, calcium in alloys on niobium base

OKCTY 1709

Срок действия

с 01.07.83 до 01.07.93

Несоблюдение стандарта преследуется по закону

Настоящий стандарт устанавливает спектральный метод определения кремния, железа, алюминия, титана и кальция от 0,01 до 1,0% в сплавах и лигатурах на основе ннобия (компоненты: ванадия не более 5%, вольфрама не более 10%, молибдена не более 5%, циркония не более 2%).

Метод основан на зависимости интенсивности спектральных линий кремния, железа, алюминия, титана и кальция от их массовой доли в образце гри возбуждении спектра в дуге постоянного

TOKa.

1. ОБЩИЕ ТРЕБОВАНИЯ

 Общие требования к методам анализа и требования безопасности — по ГОСТ 26473.0—85.

(Измененная редакция, Изм. № 1).

2. АППАРАТУРА, МАТЕРИАЛЫ И РЕАКТИВЫ

Спектрограф дифракционный ДФС-8 с решеткой 600 штр/мм (комплектная установка с универсальным штативом) или аналогичный ему прибор.

Источник постоянного тока, обеспечивающий напряжение не

менее 260 В и силу тока не менее 20 А.

Электропечь муфельная с терморегулятором, обеспечивающим температуру 800—900°С.

Микрофотометр МФ-2 или аналогичный ему прибор. Спектропроектор типа ПС-18 или аналогичного типа.

Чашки платиновые.

Весы аналитические.

Весы торсионные типа ВТ-500.

Приспособление для заточки угольных электродов.

Электроды графитовые марки ОСЧ-7-3 диаметром 6 мм, заточенные до диаметра 4,4 мм (длина заточки 10 мм) с углублением в заточенной части диаметром 2,5 мм и глубиной 2,0 мм (нижние).

Электроды графитовые марки ОСЧ-7-3 диаметром 6 мм, заточенные на усеченный конус с площадкой диаметром 1,5 мм.

Порошок графитовый ОСЧ-7-4.

Ступка с пестиком ниобневая или из органического стекла.

Фотопластинки спектральные размером 9×12, тип 2, чувств. 15 ед. или аналогичные, обеспечивающие нормальные почернения аналитических линий.

Ниобия пятиокись спектрально-чистая.

Кремния двуокись по ГОСТ 9428-73, ч.д.а.

Железа окись по ГОСТ 4173—77, ч.д.а. Титана двуокись по ГОСТ 9808—84, х.ч.

Алюминия окись, х.ч.

Кальция окись по ГОСТ 8677-76, х.ч.

Кобальта окись по ГОСТ 18671-73, ч.д.а.

Кислота соляная по ГОСТ 3118-77, разбавленная 1:1.

Спирт этиловый ректификованный технический по ГОСТ 18300-87.

Проявитель по ГОСТ 10691.1—84.

Натрий серноватистокислый по ГОСТ 27068--86.

Аммоний хлористый по ГОСТ 3773-72.

Фиксаж: 300 г серноватистокислого натрия и 20 г хлористого аммоння растворяют соответственно в 700 и 200 см³ воды, сливают полученные растворы вместе и доводят общий объем водой до-1 лм3.

Подставки из органического стекла и дерева для электродов с: пробой.

Секундомер.

Калька.

Вата. Шпатель.

Скальпель.

Пинцет.

Лампа инфракрасная ИКЗ-500 с регулятором напряжения типа РНО-250-0,5 или регулятором аналогичного типа.

(Измененная редакция, Изм. № 1).

3. ПОДГОТОВКА К АНАЛИЗУ

3.1. Приготовление основного образца сравнения (ООС), со-

держащего по 2% кремния, железа, алюминия, титана и кальция (в расчете на смесь металлов).

Образцы сравнения готовят на основе, представляющей собой или чистую пятнокись ниобия (при суммарном содержании легирующих компонентов в сплаве до 5%) или искусственную смесь окислов, имитирующую состав анализируемого сплава (основа).

1,2870 г основы, 0,0428 г двуокиси кремния, 0,0286 г окиси железа, 0,0378 г окиси алюминия, 0,0334 г окиси титана и 0,0500 г углекислого кальция перетирают в ступке под слоем спирта (30 см³) в течение 1,5—2 ч. Смесь просушивают под инфракрасной лампой до постоянной массы. Перед взятием навесок оксиды прокаливают при температуре 400°С до постоянной массы.

Массу навесок взвешивают на весах, шпателем пересыпают в пакеты из кальки. Шпатель, лодочку весов, ступку протирают ватой, смоченной спиртом. Для приготовления пакетов кальку разрезают скальпелем.

(Измененная редакция, Изм. № 1).

3.2. Приготовление образцов сравнения (ОС) Образцы сравнения готовят последовательным разбавлением основного образца сравнения, а затем каждого последующего образца основой.

Массовая доля каждой из определяемых примесей в образце сравнения и вводимые в смесь навески основы и разбавляемого образца указаны в табл. 1.

Таблица 1

	Массовая доля при- меси кремния, же- леза, алюмивия, титана, нальция	Масса навесок, г	
Обозначение образ- ца сравнения		основы	разбавляемого образца
OC1 OC2 OC3 OC4 OC5 OC6 OC7	1,0 0,5 0,2 0,1 0,05 0,05 0,02 0,01	1,0000 1,000 1,2000 1,000 1,000 1,2000 1,0000	1,0000 (OOC) 1,0000 (OC1) 0,8000 (OC2) 1,0000 (OC3) 1,0000 (OC4) 0,8000 (OC5) 1,0000 (OC6)

Смеси перетирают в ступке под слоем спирта (30 см³) в течение 1,5—2 ч и высушивают под инфракрасной лампой.

Образцы сравнения хранят в полиэтиленовых чашках с крышками из полиэтилена.

3.3. Приготовление буферной смеси, состоящей из 89% графитового порошка, 10% хлористого натрия и 1% окиси кобальта.

8,9 г графитового порошка, 1 г хлористого натрия и 0,1 г окиси кобальта перемешивают в ступке под слоем спирта (150 см²) в течение 1 ч и высушивают под инфракрасной лампой.

(Измененная редакция, Изм. № 1).

4. ПРОВЕДЕНИЕ АНАЛИЗА

Навеску анализируемой пробы массой 0.5 г промывают соляной кислотой в стеклянном стакане при нагревании на плитке. Кислоту сливают, промывают стружку дистиллированной водой и спиртом. Промытую стружку помещают в платиновую чашку и прокаливают в муфеле до постоянной массы, постепенно повышая температуру до 800°С. Окисленную пробу тщательно перемешивают, отбирают от нее навеску 20 мг вот в ступке с 80 мг буферной смеси (взвешивание тяковен на торсионных весах) В течение 15 мин слоем спирта и затем высущивают под инфракрасной лампой. Подготовленную смесь плотно набивают в углубление трех нижних электродов, предварительно обожженных в дуге постоянного тока при (7±0,5) А в течение 5 с погружением электрода в смесь, высыпанную на кальку.

Электроды (верхний и нижний с образцом) устанавливают в электрододержатели штатива с помощью пинцета. Сведением и последующим разведением электродов зажигают дугу постоянного тока и фотографируют спектры трех пар электродов на спектрографе, пользуясь трехлинзовой системой освещения щели. В

центр кассеты выводят область 290 нм.

Ток дуги поддерживают равным (15±0,5) A.

Межэлектродное расстояние 3 мм, экспозиция 60 с. Промежуточную диафрагму на конденсоре выбирают таким образом, чтобы обеспечить нормальные почернения аналитических линий. Те же операции выполняют с образцами сравнения, спектры которых фотографируют на ту же фотопластинку.

(Измененная редакция, Изм. № 1).

5. ОБРАБОТКА РЕЗУЛЬТАТОВ

5.1. В каждой из полученных спектрограмм фотометрированием находят почернения аналитической линии примеси (S_{an}) и линии элемента сравнения (S_{cp}) (табл. 2) и вычисляют разности почернений $(\Delta S = S_{an} - S_{cp})$.

Анализические линии определяемых элементов		Акалитические ликии элемента сравнения	
Элемент	Длияв волны, им	Элемент	Длика волны, им
Кремний Железо Алиминий Титан Кальций	251,92 259,84 267,51 307,86 318,13	Кобальт Кобальт Кобальт Кобальт Кобальт	251,98 259,17 257,44 307,94 318,21

По трем значениям ΔS_1 , ΔS_2 , ΔS_3 , полученным по трем спектрограммам, снятым для каждого образца, находят среднее

арифметическое значение (ΔS).

По результатам фотометрирования спектров образцов сравнения строят градуировочный график в координатах $\lg C - \Delta S$, где $\lg C$ — логарифм массовой доли определяемого элемента в образце сравнения. Массовую долю кремния, железа, алюминия, титана и кальция в образце сплава находят по результатам фотометрирования спектров анализируемого образца при помощи градуировочного графика.

5.2. Расхождения между результатами трех определений (разность большего и меньшего) и результатами двух анализов не должны превышать значений допускаемых расхождений, приве-

денных в табл. 3.

Таблина 3

Определяеный элемент	Массовая доля, %	Допускаемые расхождения, %
Қремний	0,010 0,10 1,0	0,004 0,03 0,3
Железо	0,010 0,10 1,0	0,004 0,03 0,3
Алюминий	0,010 0,10 1,0	0,004 0,03 0,3
Титан	0,010 0,10 1,0	0,004 0,03 0,3
Кальций	0,010 0,10 1,0	0,004 0,03 0,3

(Измененная редакция, Изм. № 1).

5.3. Проверка значения контрольного опыта

Для проверки значения контрольного опыта в углубления шести графитовых электродов помещают смесь основы анализируемого сплава с буферной смесью и фотографируют спектры по п. 4. В полученных спектрограммах фотометрируют плотности почернений аналитических линий кремния, железа, алюминия, титана и кальция (см. табл. 2). Разность почернений ($S_{\pi^4\phi} - S_{\phi}$) не должна превышать 0,02 единицы почернения (фон измеряется в сторону более коротких длин волн от аналитической линии).

(Измененная редакция, Изм. № 1).

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТАН И ВНЕСЕН Министерством цветной металлургии СССР

ИСПОЛНИТЕЛИ

- Ю. А. Карпов, Е. Г. Намврина, В. Г. Мискарьянц, Г. Н. Андрианова, Е. С. Данилин, М. А. Десяткова, Л. И. Кирсанова, Т. М. Малютина, Е. Ф. Маркова, В. М. Михайлов, Л. А. Никитина, Л. Г. Обручкова, Н. А. Разинцина, Н. А. Суворова, Л. Н. Филимонов
- УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 26.05.82 № 2120
- Срок проверки 1993 г. Периодичность проверки — 5 лет.
- ВВЕДЕН ВПЕРВЫЕ
- 5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссыяка	Номер раздела, пункта	
FOCT 3118-77	Разд. 2	
ГОСТ 3773- 72	Разд. 2	
ГОСТ 4173—77	Разд. 2	
FOCT 8677-76	Разд. 2	
ГОСТ 9808-84	Разд. 2	
ГОСТ 9428—73	Разд. 2.	
FOCT 10691-84	Разд. 2	
ΓΟCT 18300-87	Разд. 2	
ΓΟCT 1867173	Разд. 2	
ГОСТ 26473.0-85	1.1	
POCT 27068-86	Разд. 2	

- Срок действия продлен до 01.07.93 Постановлением Госстандарта СССР от 29.10.87 № 4096
- ПЕРЕИЗДАНИЕ [ноябрь 1988 г.] с Изменением № 1, утвержденным в октябре 1987 г. [ИУС 1—88].