МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

изделия кондитерские

МЕТОДЫ ОПРЕДЕЛЕНИЯ МАССОВОЙ ДОЛИ ЖИРА

Издание официальное

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

ИЗДЕЛИЯ КОНДИТЕРСКИЕ

ГОСТ 5899—85

Методы определения массовой доли жира

Взамен ГОСТ 5899—63

Confectionery. Methods for determination of fat fraction of total mass

MKC 67,180.10 OKCTY 9109

Постановлением Государственного комитета СССР по стандартам от 30 августа 1985 г. № 2823 дата введения установлена

01.07.86

Ограничение срока действия снято по протоколу Межгосударственного совета по стандартизации, метрологии и сертификации (ИУС 11—12—94)

Настоящий стандарт распространяется на кондитерские изделия и полуфабрикаты и устанавливает рефрактометрические и экстракционно-весовые методы определения массовой доли жира.

1. МЕТОДЫ ОТБОРА ПРОБ

1.1. Отбор проб — по ГОСТ 5904—82.

2. РЕФРАКТОМЕТРИЧЕСКИЙ МЕТОД ОПРЕДЕЛЕНИЯ МАССОВОЙ ДОЛИ ЖИРА В КОНДИТЕРСКИХ ИЗДЕЛИЯХ И ПОЛУФАБРИКАТАХ

(в шоколаде и шоколадных полуфабрикатах, пралине, какао-порошке, марципане, мучных кондитерских изделиях, отделочных и выпеченных полуфабрикатах, халве и др.)

- Метод основан на извлечении жира из навески монобром- или монохлорнафталином и определении показателя предомления растворителя и раствора жира.
 - 2.2. Аппаратура, материалы и реактивы

Весы лабораторные общего назначения 2-го класса точности с наибольшим пределом взвешивания 200 г по ГОСТ 24104—88* или другие весы, отвечающие указанным требованиям по своим метрологическим характеристикам.

Рефрактометр универсальный (УРЛ) с предельным показателем преломления до 1,7 или рефрактометр другой системы.

Шкаф сушильный электрический с контактным или техническим терморегулятором.

Термометр ртутный стеклянный лабораторный по ГОСТ 28498—90 и нормативно-технической документации.

Часы песочные на 1, 2, 3 мин.

Эксикатор по ГОСТ 25336-82.

Пикнометр типа ПЖ2 с горловиной диаметром 6 мм по ГОСТ 22524—77, вместимостью 25, 50 см³.

Пипетки исполнения 1 или 4, 2-го класса точности по ГОСТ 29169—91, вместимостью 2 см³. Стаканы стеклянные по ГОСТ 25336—82, вместимостью 25, 50 см³.

* С 1 июля 2002 г. действует ГОСТ 24104—2001 (здесь и далее).

Издание официальное

Перепечатка воспрещена

Переиздание. Декабрь 2009 г.

© Издательство стандартов, 1985 © СТАНДАРТИНФОРМ, 2010

C. 2 FOCT 5899-85

Воронки стеклянные диаметром не более 40 мм по ГОСТ 25336-82.

Бумага фильтровальная лабораторная по ГОСТ 12026-76.

Ступка фарфоровая диаметром не более 70 мм с пестиком по ГОСТ 9147—80 или чаша выпарительная 1, 2 или 3 по ГОСТ 9147—80.

Колба коническая с притертой пробкой по ГОСТ 25336—82, номинальной вместимостью 25, 50, 100 см³.

Растворитель α-бромнафталин (монобромнафталин) с показателем преломления около 1,66 или α-хлорнафталин (монохлорнафталин) с показателем преломления около 1,63.

Спирт этиловый технический по ГОСТ 17299-78.

Эфир этиловый (обезвоженный).

Эфир петролейный по нормативно-технической документации.

2.3. Подготовка к испытанию

2.3.1. Проверка нулевой точки рефрактометра

Перед началом работы с рефрактометром проверяют нулевую точку прибора при помощи дистиллированной воды. Для этого 1—2 капли дистиллированной воды помещают между призмами, затем окуляр шкалы и окуляр зрительной трубы устанавливают на резкость так, чтобы поле зрения и визирные линии были четко видны.

Визирную линию окуляра шкалы устанавливают на 1,333 (показатель преломления дистиллированной воды при 20 °C) и в зрительную трубу наблюдают границу светотени по отношению к точке пересечения двух взаимно перпендикулярных визирных линий.

Если граница светотени проходит через точку пересечения визирных линий, то прибор установлен на нуль. Если этого нет, то при помощи специального ключа и винта ставят границу светотени на точку пересечения визирных линий.

Проверку прибора необходимо проводить при температуре призм, равной 20 °C. Температуру измеряют термометром, специально укрепленным у призм рефрактометра. Установление необходимой температуры проводится пропусканием воды с заданной температурой.

2.3.2. Определение показателя преломления растворителя

В каждой партии поступающего для анализа монобром- или монохлорнафталина определяют показатель преломления с погрешностью не более 0.0001 путем нанесения на призму рефрактометра 1-2 капель этого растворителя при температуре (20.0 ± 0.1) °C.

2.3.3. Определение плотности растворителя

Высущенный при температуре 100—105 °С до постоянной массы и охлажденный в эксикаторе до комнатной температуры пикнометр взвешивают с погрешностью не более 0,0015 г, заполняют при помощи маленькой воронки дистиплированной водой немного выше метки.

Пикнометр закрывают пробкой и выдерживают 20 мин в водяном термостате или водяной бане при температуре воды $(20,0\pm0,1)$ °C. При этой температуре уровень воды в пикнометре доводят до метки при помощи капиллярной трубки или свернутой в трубку полоски фильтровальной бумаги. Пикнометр снова закрывают пробкой и выдерживают в термостате или водяной бане еще 10 мин, проверяя положение менйска по отношению к метке. Затем пикнометр вынимают из термостата или водяной бани, вытирают снаружи мягкой тканью досуха, оставляют под стеклом аналитических весов в течение 20 мин и взвешивают с погрешностью не более 0.0015 г.

Потом его освобождают от воды, споласкивают последовательно этиловым спиртом и эфиром, высушивают, как указано выше, охлаждают в эксикаторе до комнатной температуры и заполняют испытуемым растворителем, после чего производят те же операции, что и с дистиллированной водой.

Наполнение пикнометра водой (или растворителем), установку мениска и взвешивание повторяют три раза. Расхождения между параллельными взвешиваниями не должны быть более 0,005 г. Для вычисления берут среднюю арифметическую величину.

Плотность растворителя (р20) в кг/м3 вычисляют по формуле

$$\rho^{20} = \frac{(m_2 - m) \cdot 998, 23}{m_1 - m} ,$$

где т - масса пустого пикнометра, г;

т. — масса пикнометра с дистиллированной водой, г;

т. – масса пикнометра с растворителем, г;

998,23 — значение плотности воды при 20 °C, кг/м3.

- 2.3.3.1. Результат определения вычисляют с точностью до первого десятичного знака. Окончательный результат округляют до целого числа.
 - 2.3.4. Калибровка пипетки по растворителю

Калибровку проводят для каждой вновь применяемой пипетки.

Пипетку вместимостью 2 см³ калибруют по растворителю, отмеривая ею соответствующий объем монобром- или монохлорнафталина и взвешивая его в предварительно взвешенной колбе с притертой пробкой или стаканчике для взвешивания с погрещностью не более 0,0015 г. Расхождение между параллельными взвешиваниями должно быть не более 0,005 г. Взвешивание проводят три раза. Для расчета берут среднеарифметическое значение.

Объем пипетки (V_n) в см³ вычисляют по формуле

$$V_{\rm p} = \frac{m_3}{\rho^{20}} \cdot 1000$$
,

где m₁ — масса растворителя, соответствующая объему взятой пипетки, г;

р²⁰ — плотность растворителя при температуре 20 °C, определенная по п. 2.3.3, кг/м³.

 2.3.4.1. Результат вычисляют с точностью до четвертого десятичного знака. Окончательный результат округляют до третьего десятичного знака.

2.4. Проведение испытания

Навеску измельченного исследуемого продукта взвешивают с погрешностью не более 0,001 г. Массу навески определяют по таблице.

Предполагаемая массовая доля жиров, %	Масса навески исследуемого продукта,
Более 30	Не менее 0,5
От 20 до 30	0,6-0,8
* 10 * 20	0,8-1,2
Менее 10	1,2—1,7

Навеску помещают в фарфоровую ступку или фарфоровую чашку, растирают пестиком 2-3 мин, затем приливают 2 см³ растворителя предварительно откалиброванной пипеткой по π . 2.3.4 и вновь все растирают в течение 3 мин, фильтруют содержимое через бумажный фильтр в маленький стаканчик или другую лабораторную посуду. Фильтрат перемешивают стеклянной палочкой. 2 капли фильтрата наносят на призму рефрактометра при температуре (20.0 ± 0.1) °C и отсчитывают показатель преломления.

Показатель предомления определяют не менее трех раз и за результат испытания принимают среднеарифметическое результатов измерения.

Во избежание испарения растворителя продолжительность фильтрации и определение показателя преломления должны быть не более 30 мин.

Если определение показателя преломления проводилось не при 20 °C, то следует внести поправку. Если при проведении определения показателя преломления температура призм рефрактометра будет в пределах 15—20 °C, от величины показателя преломления следует отнимать поправку, если определение будет проведено в пределах температур 20—35 °C, то к найденному показателю преломления следует прибавить соответствующую поправку согласно приложению 1.

- 2.5. Обработка результатов
- 2.5.1. Массовую долю жира (Х) в процентах вычисляют по формуле

$$X = \frac{V_{\rm p} \ \rho_{\rm x}^{20}}{m \cdot 1000} \cdot \frac{H_{\rm p} - H_{\rm px}}{H_{\rm px} \cdot H_{\rm x}} \cdot 100$$
,

где $V_{_{\rm P}}$ — объем растворителя, взятый для извлечения жира, см $^{\rm S}$;

р²⁰ — плотность жира при 20 °C, кг/м³;

II. – показатель преломления растворителя;

C. 4 FOCT 5899-85

II... — показатель преломления раствора жира в растворителе;

П — показатель преломления жира;

m — масса навески продукта, г.

2.5.2. Массовую долю жира (X_1) в процентах в пересчете на сухое вещество вычисляют по формуле

$$X_1 = \frac{X \cdot 100}{100 - W}$$
,

где W — массовая доля влаги в исследуемом продукте, %.

- 2.5.3. Результаты параплельных определений вычисляют с точностью до второго десятичного знака. Окончательный результат округляют до первого десятичного знака.
- 2.5.4. За окончательный результат испытания принимают среднеарифметическое результатов двух параллельных определений, допускаемые расхождения между которыми в одной лаборатории не должны превышать по абсолютной величине 0,3 %, а выполненных в разных лабораториях 0,5 %.

Предел возможных значений погрешности измерений 0.5% (P = 0.95).

Примечания:

- При вычислении массовой доли жира пользуются показателями преломления и плотности жиров, приведенными в приложении 2.
- Если в исследуемом продукте находится смесь жиров (например, какао масло и сливочное масло в шоколаде с молоком, ореховое масло, какао масло и кондитерский жир в корпусах конфет и т. п.), показатель преломления и плотность допускается определять расчетным путем (см. приложение 4).

Показатель преломления смеси жиров допускается также определять экстрагированием жира из исследуемого продукта следующим образом: 5—10 г измельченного продукта смещивают с 15—20 см³ этилового или петролейного эфира, хлороформа или четыреххлористого углерода, взбалтывают в гечение 10 мин, вытяжку профильтровывают в колбу, растворитель полностью отгоняют, остаток подсушивают в сущильном шкафу при температуре 100—105 °C в течение 30 мин и определяют показатель преломления смеси жиров по п. 2.4 с учетом поправки на температуру согласно приложению 3.

- Для неизвестных жира и смеси жиров плотность принимают равной 930 кг/м³.
- 4. Если исследуемый продукт содержит более 5 % воды, то ступку с навеской помещают в сушильный шкаф и подсушивают навеску при температуре 100—105 °C в течение 30 мин, затем в ступку, после ее охлаждения до комнатной температуры, придивают микропипеткой растворитель.
- При хорошем растирании навески с растворителем в ступке, когда смесь перенесена на фильтр, разрешается стекающие из воронки капли раствора жира в растворителе наносить на призму рефрактометра, не дожидаясь, когда профильтруется вся смесь.

3. РЕФРАКТОМЕТРИЧЕСКИЙ МЕТОД ОПРЕДЕЛЕНИЯ МАССОВОЙ ДОЛИ ЖИРА В КОНДИТЕРСКИХ ИЗДЕЛИЯХ ТИПА ИРИС, СЛИВОЧНАЯ ПОМАДКА, СЛИВОЧНАЯ ТЯНУЧКА, КОНФЕТЫ «СТАРТ», «КОРОВКА» и т. п.

- 3.1. Метод основан на извлечении жира из навески монобром или монохлорнафталином после предварительной обработки ее уксусной кислотой; показатель преломления определяют после высушивания вытяжки углекислым безводным натрием.
 - 3.2. Аппаратура, материалы и реактивы

Весы лабораторные общего назначения 2-го класса точности с наибольшим пределом взвешивания 200 г по ГОСТ 24104—88 или другие весы, отвечающие указанным требованиям по своим метрологическим характеристикам.

Рефрактометр универсальный (УРЛ) с предельным показателем преломления до 1,7 или рефрактометр другой системы.

Шкаф сушильный электрический с контактным или техническим терморегулятором.

Термометр ртутный стеклянный лабораторный по ГОСТ 28498—90 и нормативно-технической документации.

Часы песочные на 1, 2, 3 мин.

Баня водяная.

Эксикатор по ГОСТ 25336-82.

Пикнометр типа ПЖ2 с горловиной диаметром 6 мм по ГОСТ 22524—77, вместимостью 25, 50 см³.

Пипетки исполнения 1 или 4, 2-го класса точности по ГОСТ 29169--91, вместимостью 2 см³.

Стаканы стеклянные по ГОСТ 25336-82, вместимостью 25, 50 см³.

Воронки стеклянные диаметром не более 40 мм по ГОСТ 25336-82.

Бумага фильтровальная лабораторная по ГОСТ 12026-76.

Ступка фарфоровая диаметром не более 70 мм с пестиком по ГОСТ 9147—80 или чаша выпарительная 1, 2, 3 по ГОСТ 9147—80.

Растворитель α-бромнафталин (монобромнафталин) с показателем преломления около 1,66 или α-хлорнафталин (монохлорнафталин) с показателем преломления около 1,63.

Кислота уксусная по ГОСТ 61-75, х. ч., раствор с массовой долей 80 %.

Натрий углекислый безводный по ГОСТ 83-79, х. ч.

- 3.3. Подготовка к испытанию
- 3.3.1. Проверка рефрактометра по п. 2.3.1.
- 3.3.2. Определение показателя преломления растворителя по п. 2.3.2.
- 3.3.3. Определение плотности растворителя по п. 2.3.3.
- 3.3.4. Калибровка пилетки по растворителю по п. 2.3.4.
- 3.4. Проведение испытания

Навеску измельченного исследуемого продукта в количестве около 1,5 г взвешивают с погрешностью не более 0,001 г, помещают в фарфоровую ступку или фарфоровую чашку.

При определении жира в ирисе прибавляют к навеске 1 см³ воды, для остальных изделий — 0,5 см⁴ воды. Навеску полностью растворяют на горячей водяной бане, затем охлаждают до комнатной температуры, прибавляют около 1 г чистого речного сухого песка и 1 см³ уксусной кислоты с массовой долей 80 %, все тщательно растирают в течение 2 мин, после чего добавляют 2 см³ монобром- или монохлорнафталина и растирают в течение 3 мин, добавляют 2 г безводного углекислого натрия при анализе ириса (1 г — для остальных продуктов), тщательно перемешивают около 1 мин и фильтруют содержимое через бумажный фильтр в маленький стаканчик. Фильтрат перемешивают стеклянной палочкой.

2 капли фильтрата наносят на призму рефрактометра при температуре (20,0±0,1) °C и отсчитывают показатель предомления.

Показатель предомления определяют не менее трех раз и за результат испытания берут среднеарифметическое результатов измерения.

Если определение проводилось не при 20 °C, то следует внести поправку по п. 2.4 (см. приложение 1).

3.5. Обработка результатов

Обработку результатов проводят по п. 2.5 раздела 2.

4. ЭКСТРАКЦИОННО-ВЕСОВОЙ МЕТОД ОПРЕДЕЛЕНИЯ МАССОВОЙ ДОЛИ ЖИРА В МУЧНЫХ КОНДИТЕРСКИХ ИЗДЕЛИЯХ И ОТДЕЛОЧНЫХ И ВЫПЕЧЕННЫХ ПОЛУФАБРИКАТАХ

- 4.1. Метод основан на извлечении жира из предварительно гидролизованной навески изделия растворителем и определении количества жира взвещиванием после удаления растворителя из определенного объема полученного раствора.
 - 4.2. Аппаратура, материалы и реактивы

Весы лабораторные общего назначения 2-го класса точности с наибольшим пределом взвешивания 200 г и 3-го класса с наибольшим пределом взвешивания 1 кг по ГОСТ 24104—88 или другие весы, отвечающие указанным требованиям по своим метрологическим характеристикам.

Шкаф сушильный электрический с контактным или техническим терморегулятором.

Часы песочные на 1, 2, 3 мин.

Центрифуга лабораторная.

Электроплитка.

Эксикатор по ГОСТ 25336-82.

Баня водяная,

Колбы типа Кн исполнения 1, 2 по ГОСТ 25336-82, вместимостью 100, 250 см3.

C. 6 FOCT 5899-85

Цилиндры исполнения 1, 3 по ГОСТ 1770-74, вместимостью 100 см³.

Пипетки исполнения 2, 2-го класса точности, по ГОСТ 29169-91, вместимостью 20, 50 см³.

Холодильник шариковый по ГОСТ 25336-82.

Холодильник с прямой трубкой по ГОСТ 25336-82.

Стаканы стеклянные по ГОСТ 25336-82, вместимостью 25, 50 см³.

Воронки стеклянные по ГОСТ 25336-82.

Вата медицинская гигроскопическая по ГОСТ 5556--81.

Бумага фильтровальная лабораторная по ГОСТ 12026-76.

Груша резиновая.

Кислота соляная по ГОСТ 3118--77, раствор с массовой долей 1,5 %, х. ч.

Кислота серная по ГОСТ 4204-77, раствор с массовой долей 5 %, х. ч.

Хлороформ (трихлорметан) по ГОСТ 20015-88 или

Этилен хлористый (дихлорэтан) по ГОСТ 1942-86 плотностью 1252,0-1253,5 кг/м³.

Аммиак водный по ГОСТ 3760-79.

Фенолфталеин по НТД, спиртовой раствор с массовой долей 1 %.

4.3. Проведение испытаний

4.3.1. Навеску измельченного исследуемого продукта в количестве 10 г (при содержании жира в изделиях свыше 10 % навеска может быть уменьшена до 5 г) взвешивают с погрешностью не более 0.01 г, помещают в коническую колбу вместимостью 250 см³, приливают 100 см³ 1,5%-ной соляной кислоты (или 100 см³ 5 %-ной серной кислоты), кипятят в колбе с обратным холодильником на слабом огне 30 мин. Затем колбу охлаждают водой до комнатной температуры, вносят 50 см³ хлороформа, плотно закрывают хорошо пригнанной пробкой, энергично взбалтывают в продолжение 15 мин, выливают содержимое в центрифужные пробирки и центрифутируют в продолжение 2—3 мин. В пробирке образуется три слоя. Верхний водный слой удаляют. Пипеткой, снабженной резиновой грушей, отбирают хлороформный раствор жира и фильтруют его в сухую колбу через небольшой ватный тампон, вложенный в узкую часть воронки, причем кончик пипетки должен при этом касаться ваты. 20 см³ фильтрата помещают в предварительно доведенную до постоянной массы и взвешенную с погрешностью не более 0,001 г колбу вместимостью примерно 100 см³.

Фильтрация и отбор должны проводиться в течение 2 мин, хлороформ из колбы отгоняют на горячей бане, пользуясь холодильником с прямой трубкой. Оставшийся в колбе жир сушат до постоянной массы, обычно 1-1.5 ч, при температуре 100-105 °C, охлаждают в эксикаторе 20 мин и взвешивают колбу с погрешностью не более 0.001 г.

4.3.2. Допускается следующий способ расслаивания. После гидролиза в охлажденную колбу добавляют 5 см³ раствора аммиака (плотностью 910,0 кг/м³), 50 см³ хлороформа. Содержимое колбы взбалтывают в течение 15 мин и оставляют на 1 ч для отстаивания. За это время полностью отделяется и становится четко видимым нижний хлороформный слой. Если расслаивания не произойдет, добавляют еще 2—3 см³ аммиака, следя за тем, чтобы реакция по фенолфталеину оставалась кислой.

После расслаивания отбор, фильтрацию, отгонку хлороформного слоя и высушивание жира велут по п. 4.3.1.

Примечания:

- 1. Отгонку и фильтрацию растворителя проводят под вытяжкой.
- При отсутствии хлороформа допускается применение дихлорэтана, который следует хранить в темных склянках.
 - 4.4. Обработка результатов
- 4.4.1. Массовую долю жира (X_2) в процентах в пересчете на сухое вещество вычисляют по формуле

$$X_2 = \frac{(m_1 - m_2) \cdot 50}{m \cdot 20} \cdot \frac{100}{100 - W}$$
 100,

где m₁ — масса колбы с высущенным жиром, г;

т, — масса пустой колбы, г;

50 — объем хлороформа, взятый для растворения жира, см³;

т — масса навески, г:

20 — объем хлороформного раствора жира, взятый для отгона, см³;

W — массовая доля влаги в исследуемом изделии, %.

- 4.4.2. Результаты параллельных определений вычисляют с точностью до второго десятичного знака. Окончательный результат округляют до первого десятичного знака.
- 4.4.3. За окончательный результат испытания принимают среднеарифметическое результатов двух параллельных определений, допускаемые расхождения между которыми по абсолютной величине не должны превышать 0.5%. Предел возможных значений погрещности измерений 0,8% (P=0,95).

5. ЭКСТРАКЦИОННО-ВЕСОВОЙ МЕТОД

 5.1. Метод применяется при возникновении разногласий для определения массовой доли жира во всех кондитерских продуктах и полуфабрикатах.

Метод основан на извлечении жира растворителем непосредственно из навески или из навески, предварительно обработанной соляной кислотой. После отгонки растворителя из полученного экстракта остаток высуднивают и взвешивают.

5.2. Аппаратура, материалы и реактивы

Весы лабораторные общего назначения 2-го класса точности с наибольшим пределом взвешивания 200 г по ГОСТ 24104—88 или другие весы, отвечающие указанным требованиям по своим метрологическим характеристикам.

Шкаф сушильный электрический с контактным или техническим терморегулятором.

Электроплитка.

Эксикатор по ГОСТ 25336 - 82.

Баня водяная.

Прибор Сокслета.

Вата медицинская гигроскопическая по ГОСТ 5556-81.

Бумага фильтровальная лабораторная по ГОСТ 12026-76.

Стаканы стеклянные по ГОСТ 25336-82, вместимостью 100, 150 см3.

Стаканчики для взвешивания (бюксы) по ГОСТ 25336-82.

Воронки лабораторные диаметром 50--70 мм по ГОСТ 25336-82.

Цилиндр исполнения 1 по ГОСТ 1770—74, вместимостью 25 см³.

Ступка фарфоровая диаметром 110-180 мм с пестиком по ГОСТ 9147-80.

Стекло часовое.

Кислота соляная по ГОСТ 3118—77, концентрированная, х. ч.

Углерод четыреххлористый по ГОСТ 20288-74 или

Хлороформ по ГОСТ 20015-88, или

Эфир этиловый (обезвоженный) или

Эфир петролейный по нормативно-технической документации.

Вода дистиллированная по ГОСТ 6709—72.

5.3. Подготовка к испытанию

Навеску измельченного продукта взвешивают с погрешностью не более 0,001 г. Массу навески 5—10 г рассчитывают в зависимости от массовой доли жира в исследуемом продукте так, чтобы в навеске было около 1—2 г жира.

Продукты с высокой влажностью, размазывающиеся при измельчении и образующие комки (ирис, корпуса конфет «Птичье молоко», тянучка и т. п.), после измельчения подвергают следующей обработке. В стакан с навеской приливают 15—20 см³ дистиллированной воды и 20 см³ концентрированной соляной кислоты, перемешивают содержимое стеклянной палочкой, закрывают стакан часовым стеклом, нагревают содержимое на кипящей водяной бане 5 мин. Затем часовое стекло споласкивают горячей дистиллированной водой над стаканом.

Подготавливают воронку с фильтром, смачивают фильтр дистиллированной водой, переносят содержимое стакана на фильтр, дают жидкости стечь и не менее четырех раз промывают остаток на фильтре горячей дистиллированной водой. Фильтр при промывании должен быть все время с водой, поэтому его наполняют водой немедленно, как только стечет предыдущая порция жидкости.

Промытый фильтр вынимают из воронки, помещают в бюксу и высушивают в сушильном шкафу при температуре 100—105 °C до постоянной массы. Кондитерские изделия небольшой влажности (шоколад, халва, печенье) допускается не обрабатывать соляной кислотой.

5.4. Проведение испытаний

Навеску измельченного продукта или высушенный фильтр с навеской, обработанной кислотой, помещают в бумажный патрон, на дно которого предварительно помещен кусочек ваты и который уплотнен так, чтобы закрыть щели на дне. Патрон сверху также плотно закрывают ватой. Патрон вкладывают в экстрактор, присоединяют к экстрактору холодильник и приемную колбу. Приемную колбу предварительно высушивают до постоянной массы при температуре 100—105 °C, охлаждают в эксикаторе до комнатной температуры и взвешивают с погрешностью не более 0,001 г.

Поместив патрон в экстрактор Сокслета и собрав весь прибор, приливают растворитель, опо-

ласкивая им предварительно бюксу, в которой подсушивали фильтр с навеской.

Количество растворителя должно в 1,5 раза превышать объем экстрактора при заполнении его до верхнего колена сифона.

Экстрагирование ведут не менее 5 ч из навески, необработанной кислотой, и не менее 3,5 ч из

навески, обработанной кислотой.

Для определения окончания экстракции из экстрактора отбирают 1—2 см³ жидкости, наносят на сухое часовое стекло и испаряют растворитель. Если после испарения растворителя стекло будет прозрачным, экстракция закончена.

По окончании экстракции колбе с экстрагированным жиром и растворителем дают остыть. Разъединяют колбу, холодильник и экстрактор. Приемную колбу присоединяют к прямому холодильнику и отгоняют растворитель. После этого колбу помещают в кипящую водяную баню и удаляют остатки растворителя.

Для полного удаления растворителя и влаги колбу с жиром помещают в сушильный шкаф и выдерживают при температуре 100—105 °C в течение 1 ч, затем охлаждают в эксикаторе и взвешивают с погрешностью не более 0,001 г.

5.5. Обработка результатов

5.5.1. Массовую долю жира (X_{i}) в процентах вычисляют по формуле

$$X_3 = \frac{(m_2 - m_1) \cdot 100}{m}$$
.

где m_i — масса приемной колбы без жира, г;

т, — масса приемной колбы с жиром, г;

т — масса навески, г;

5.5.2. Массовую долю жира (X_4) в процентах в пересчете на сухое вещество вычисляют по формуле

$$X_4 = \frac{X_3 \cdot 100}{100 - W}$$
,

где W — массовая доля влаги в исследуемом изделии, %.

 5.5.3. Результаты параллельных определений вычисляют с точностью до второго десятичного знака. Окончательный результат округляют до первого десятичного знака.

5.5.4. За окончательный результат испытания принимают среднеарифметическое результатов двух параллельных определений, допускаемые расхождения между которыми в одной лаборатории не должны превышать по абсолютной величине 0,3 %, а выполненных в разных лабораториях — 0,5 %.

Предел возможных значений погрешности измерений 0.5% (P = 0.95).

6. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

6.1. Применяемые растворители — эфир этиловый, хлороформ (трихлорметан), этилен хлористый (дихлорэтан) и углерод четыреххлористый должны соответствовать требованиям безопасности, регламентируемым нормативно-технической документацией, ГОСТ 20015—88, ГОСТ 1942-86, ГОСТ 20288—74.

6.2. Работу со всеми растворителями необходимо проводить только под тягой.

При работе с растворителями нельзя пользоваться открытым огнем.

ПРИЛОЖЕНИЕ 1 Обязательное

Поправка при рефрактометрическом определении показателей преломления раствора жира и смеси жиров в растворителе для температур от 15 до 35 $^{\circ}\mathrm{C}$

Температура, "С	Поправка	Температура, С	Поправка	
	От найденного показа	теля преломления отнять		
15,0	0,0022	17,5	0,0011	
15,5	0,0019	18,0	0,0009	
16,0	0,0017	18,5	0.0007	
16,5	0,0015	19,0	0,0004	
17,0	0,0013	19,5	0,0002	
	К найденному показател	но преломления прибавить		
20,5	0,0002	1 28,0	0,0035	
21,0	0,0004	28,5	0,0037	
21,5	0,0006	29,0	0,0039 0,0041 0,0043	
22,0	0,0009	29,5		
22,5	0,0011	30,0		
23,0 0,0013		30,5	0,0045	
23,5	0,0015	31,0	0,0048	
24,0 0,0017		31,5	0,0050	
24,5 0,0019		32,0	0,0052	
25,0	0.0022	32,5	0,0055	
25,5	0.0024	33,0	0,0057	
26,0	0,0026	33,5	0,0059	
26,5	0.0028	34,0	0,0061	
27,0	0,0030	34,5	0,0063	
27,5	0,0033	35,0	0.0066	

Показатели преломления и плотности жиров при 20 °C

Наименование жиров	Плотность, кг/м3	Показатель предомлени	
Какао-масло	937,0	1,4647	
Кондитерский жир	928,0	1,4674	
Маргарин	928,0	1,4690	
Соевое масло	922,0	1,4756	
Подсолнечное масло	924,0	1,4736	
Коровье масло	930,0	1,4637	
Кукурузное масло	920,0	1,4745	
Кокосовое масло	928,0	1,4567	
Кунжутное масло	918,0	1,4730	
Жиры типа «Шоклин»	930,0	1,4642	
Концентраты фосфатидные	922,0	1,4746	
Кулинарный жир	926,0	1,4724	
Масло орехов:			
арахиса	914,0	1,4704	
кешью	912,0	1,4692	
миндаля	912,0	1,4707	
фундука	912,0	1,4706	
Масло ядра абрикосовой косточки	918,0	1,4715	
Свиной топленый жир	917,0	1,4712	

ПРИЛОЖЕНИЕ З Обязательное

Поправка при рефрактометрическом определении показателя преломления жира и смеси жиров для температур от 15 до 35 °C

Температура, "С	Поправка	Температура, С	Поправка	
	От найденного показа	теля преломления отнять		
15,0	0,0017	17,5	0,0008	
15,5	0,0015	18,0	0,0007 0,0005 0,0003	
16,0	0,0014	18,5		
16,5	0,0012	19,0		
17,0	0,0010	19,5	0,0002	
	К найденному показател	по преломления прибавить		
20,5	0,0002	11 28,0	0,0028	
21,0	0,0004	28,5	0,0030	
21,5	0,0005	29,0	0,0031	
22,0	0,0007	29,5		
22,5 23,0 0,0009 0,0011		30,0	0,0035 0,0037	
		30,5		
23,5	0.0012	31,0	0.0038	
24,0 0,0014		31,5	0,0040	
24,5 0,0016		32,0	0,0042	
25,0	0,0018	32,5	0,0043	
25,5	0.0019	33,0	0,0045	
26,0	0,0021	33,5	0.0047	
26,5	0.0023	34,0	0,0049	
27,0	0.0024	34,5	0,0050	
27.5 0,0026		35,0	0.0052	

Пример расчета показателя преломления и плотности смеси жиров в кондитерских изделиях. Рецептура на конфеты «Кара-Кум»

Наименование ва	Массо - вая доля сухих веществ, %	Общий расход сыръя на 1 т незацернутых конфет, кг				Коэффици- ент предом- ления жира	$m_i \cdot n_i^{20}$	Плотность жира при	m. • ρ ²⁰
		и натуре	в сухих веще- ствах	F	Kt m,	при 20 °C n _I	m, a,	20 °C' ρ ²⁰ κ	m. Va
1	2	3	4	5	6	7	8	9	10
Шоколадная									Marine Inc
глазурь	99,1	303,2	300,5	35,9	108,8	1,4647	159,3594	937	101945,6
Сахарный песок	99,85	194,1	193,8	_	_	1.7	_	-	_
Сахарная пудра	99,85	191,0	190.7	-	_	-	_	-	_
Ядро миндаля									1
жареное	97.5	97,0	94.6	55.0	53,3	1,4707	78,3883	912	48609,6
Тертое какао	97,4	96,1	93,6	54.0	51,9	1,4647	76,0179	937	48630,3
Масло сливочное	84,0	28,1	23,6	82,5	23,2	1,4637	33,9578	930	21576,0
Масло какао	100,0	76,3	76,3	100,0	76,3	1,4647	111,7566	937	71493,1
Вафли	95.5	45.7	43,6	-	-		-	-	
Ванилин	_	0.19	_	-	-	-	_	_	_
Разжижитель	98,5	0,13	0,13	98,5	0,13	1,4746	0,1917	922	119,86
итого	_	1031,82	1016,83	_	313,63	-	459,6717	-	292374,46

Для расчета коэффициента преломления смеси жиров следует полученную сумму произведений масс жира на коэффициент преломления (графа 8) отнести к сумме масс жира (графа 6)

$$n^{20} = \frac{459,6717}{313,63} = 1,4656$$
.

Для расчета плотности емеси жиров следует полученную сумму произведений масс жира на плотность жира (графа 10) отнести к сумме масс жира (графа 6)

$$\rho_{\text{K}}^{20} = \frac{292374,46}{313,63} = 932,2 \text{ KT / M}^3,$$

$$\rho_{\infty}^{20} = 932 \; \text{kg/m}^3.$$