

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

СОЕДИНИТЕЛИ ОПТИЧЕСКИЕ требования к технологическому процессу ГОСТ 26991—86

Издание официальное

ИЗДАТЕЛЬСТВО СТАНДАРТОВ Москвя

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

соединители оптические

FOCT 26991—86

Требования к технологическому процессу

Optical connectors. Requirements for technological process

OKII 66 6549

Дата введения 01.07.87

Настоящий стандарт распространяется на однополюсные оптические соединители (далее — соединители) типа «кабель — кабель» кварцевого многомодового оптического волокна (далее волокно) с круглым поперечным сечением и устанавливает технические требования к технологическим процессам разделки оптического кабеля (далее — кабель), монтажа кабельной части и сборки соединителя.

1. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

Оптические соединители с вносимыми потерями не более
 (0,5 *) дБ изготовляют в соответствии с требованиями настоящего стандарта и конструкторской документации на кабель и соединитель, утвержденной в установленном порядке.

1.2. Требования к технологическому процессу разделки кабеля 1.2.1. Технологический процесс разделки кабеля проводят по

схеме, приведенной в приложении 1.

1.2.2. В процессе резки, разделки и обработки кабеля не допускаются изгибы, скручивания и механические нагрузки, превышающие предельные значения, заданные в ТУ на кабель конкретного типа.

C 01.01.90

Издание официальное

Перепечатка воспрещена © Издательство стандартов, 1986

Издательство стандартов, 1993
 Переиздание с изменениями

1.2.3. В случае отсутствия маркировки на отрезках кабеля необходимо нанести технологическую маркировку.

(Измененная редакция, Изм. № 1). 1.2.4—1.2.6. (Исключены, Изм. № 1).

 1.2.7. Перед разделкой кабеля необходимо проводить его циклическую термообработку при температуре не более 70°C.

1.2.8. В процессе разделки и монтажа мерные отрезки кабеля

должны проходить контроль на светопрохождение.

1.2.7, 1.2.8. (Измененная редакция, Изм. № 1).

 Инструмент, используемый при снятии оболочки кабеля, не должен повреждать защитное покрытие и волокно и должен

обеспечивать срез оболочки без рваных краев.

- 1.2.10. Методы и средства для снятия защитного покрытия волокна должны обеспечивать отсутствие остатков материала защитного покрытия на опорной поверхности волокна, механических, химических и термических повреждений, виосящих внутренние напряжения в волокно и приводящих к снижению его прочности.
- 1.2.11. После разделки кабеля необходимо обеспечить защиту оптического волокна от механических повреждений и фиксацию полюсов кабеля, не допускать нарушения требований п 1.2.2.

 1.2.12. Свободный от покрытия участок волокна не должен находиться на воздухе перед сборкой более 4 ч.

1.2.11, 1.2.12. (Измененная редакция, Изм. № 1).

1.3. Требования к технологическому процессу монтажа кабель-

ной части и сборки соединителя

 1.3.1. Технологический процесс монтажа кабельной части и сборки соединителя проводят по схеме, приведенной в приложевии 2.

1.3.2. Перед монтажом и обработкой кабельной части арматурные детали соединителя, находящиеся на кабеле, должны быть

временно зафиксированы.

1.3.3 Соединяемые поверхности элементов монтажа должны быть обезжирены и очищены тканью из безворсового материала, смоченной спиртом по ГОСТ 18300. Дополнительную очистку осуществляют методом окунания в спирт.

(Измененная редакция, Изм. № 1).

 1.3.4. Температурные режимы при монтаже кабельной части и сборке соединителя не должны превышать значений эксплуатационных характеристик элементов сборки.

 1.3.5. Методы и средства подготовки торцевых поверхностей волокна и наконечника должны обеспечивать требования конструк-

торской документации на соединитель конкретного типа.

1.3.6. Методы и средства, применяемые для армирования кабеля наконечником, должны обеспечивать надежную фиксацию волокна в наконечнике соединителя, нарушение которой не допус-

- 1.3.7. Методы и средства центрирования осей волокна и наконечника должны обеспечивать требования конструкторской документации на соединитель конкретного типа.
 - 1.3.5—1.3.7. (Измененная редакция, Изм. № 1).
 - 1.3.8. (Исключен, Изм. № 1).
- 1.3.9. Обработанные поверхности наконечника необходимо предохранять от механических повреждений.

1.3.10. Необходимо проводить контроль геометрических пара-

метров кабельной части соединителя-

 1.3.11. Сборку соединителя проводят по рабочему чертежу на соединитель конкретного типа.

 1.3.12. Необходимо проводить контроль геометрических и одтических параметров соединителя.

(Измененная редакция, Изм. № 1).

2. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

2.1. Для обеспечения безопасности при технологических процессах разделки кабеля и монтажа кабельной части оптического соединителя необходимо соблюдать требования ГОСТ 12.3.002 и настоящего стандарта.

2.2 К работам по разделке кабеля, монтажа кабельной части и сборке оптического соединителя допускаются лица, получившие инструктаж по технике безопасности и производственной санитарии, обученные правилам работы со стекловолокном, химическими веществами и электрическими приборами по ГОСТ 12.0.004.

2.3. Для предупреждения поражения электрическим током не-

обходимо:

соблюдать требования ГОСТ 12.1.019;

проводить испытания и электрические измерения в соответствия с требованиями ГОСТ 12.3.019;

предусматривать защиту изоляции наружной электропроводки

от механических и термических повреждений;

предусматривать надежное заземление всех металлических частей оборудования, которые могут оказаться под напряжением, по ГОСТ 12.1.030;

выполнять «Правила технической эксплуатации электроустановок потребителей» (ПТЭ), утвержденные Госэнергонадзором;

соблюдать требования безопасности электрооборудования по ГОСТ 12.2.007.0.

 Для предупреждения пожароопасности необходимо: соблюдать требования ГОСТ 12.1.004; иметь отдельные помещения для хранения и розлива легковоспламеняющихся жидкостей (ЛВЖ), приготовления эпоксидных смол и др. клеящих составов, оборудованные приточно-вытяжной вентиляцией;

проводить работы с ЛВЖ в спецодежде из антистатического

материала;

иметь сменные нормы хранения спирта, клеящего состава, органических растворителей, установленные технологическим под-

разделением предприятия-изготовителя;

иметь тару для хранения спирта, клеящих веществ, растворителей из небыющегося и не дающего искру материала с плотно закрывающимися крышками, с четким названием жидкости, надписью «Огнеопасно» и устойчиво закрепленную на рабочих местах;

иметь сборники с плотно закрывающимися крышками для отходов обтирочных материалов и хлопчатобумажных тампонов, загрязненных спиртом, клеящим составом, растворителями, а также для отходов раздельно по видам жидкости, с четким наименованием содержимого, с надписью «Огнеопасно» (содержимое сборников удалять из помещения не реже одного раза в смену);

иметь автоматический сигнализатор для определения взрывоопасных концентраций паров в помещении хранения и розлива

лвж.

 Для предупреждения опасности токсического поражения жимическим веществом и кожных поражений необходимо:

соблюдать требования ГОСТ 12.1.007;

иметь отдельные помещения для приготовления эпоксидного клея и др. клеящих составов, оборудованные вентиляцией в объеме не менее трехкратного обмена воздуха помещения за 1 ч;

предусматривать местные вытяжные устройства на рабочих местах, обеспечивающие удаление вредных веществ (абразивной и стеклянной пыли, паров спирта, растворителей) до концентрации, не превышающей предельно допустимую, указаниую в ГОСТ 12.1.005 и дополнительном перечне «Предельно допустимых концентраций вредных веществ в воздухе раболей зоны», утвержденном Минздравом СССР. Скорость движения воздуха в рабочем сечении местной вытяжной вентиляции должна быть не менее 0.6 м/с:

предусматривать световую или звуковую сигнализации, сооб-

щающие о прекращении работы вентиляции;

иметь вытяжные шкафы на операциях промывки;

использовать на операции приклейки трикотажные перчатки по ГОСТ 5007 и хирургические резиновые перчатки по ГОСТ 3;

использовать на операции промывки хирургические резиновые перчатки по ГОСТ 3.

(Измененная редакция, Изм .№ 1).

2.6. Для предотвращения термоожога должны быть предусмот-

рены:

теплоизоляция термооборудования, обеспечивающая температуру их наружной поверхности не выше 45 °C при температуре термооборудования более 100 °C;

теплоизоляционные рукоятки у инструмента, предназначенного

для загрузки и выгрузки деталей;

ограждения мест, предназначенных для охлаждения нагретых

деталей;

индивидуальные средства защиты (специальные рукавицы для работы с нагретыми деталями по ГОСТ 12.4.010, перчатки трикотажные для снятия деталей после сушки по ГОСТ 5007).

2.7. Для предупреждения травмирования необходимо:

снабжать персонал защитными очками по ГОСТ 12.4.013;

убирать отходы волокна щеткой в тару и удалять их в конце

смены в специальное место для уничтожения.

 Производственные помещения должны быть оборудованы в соответствии с условиями проведения технологических процессов и требованиями эксплуатации оптико-механических, контрольно-измерительных приборов и оборудования.

2.9. Требования к помещениям участков сборки и контроля при-

ведены в таблице.

Наименование	Максинально- в 1 дм ³ возд пыти, шт.,	уха частиц	Температура воздушнов средм, *C 23±5 23±2		
гроизводственного участва	не более 1,0 мкм	не более 5,0 жкм			
Сборочный Контрольный	400—800 400—800	25 25			

(Измененная редакция, Изм. № 1).

 Отделка пола, потолка и стен производственных помещений должна быть выполнена из непылящих и неэлектризующихся материалов.

2.11. Уровень шума должен соответствовать требованиям ГОСТ 12.1.003 и «Санитарным нормам допустимых уровней шума на рабочих местах».

2.12. Рабочие должны быть обеспечены санитарно-бытовыми

помещениями.

 Для предупреждения профессионального заболевания рабочие, занятые на операциях изготовления оптических сединителей, должны проходить предварительные (при поступлении на работу) в периодические медицинские осмотры в соответствии с Инструкцией Минэдрава СССР.

з, методы контроля

 Контроль кабеля проводят в соответствии с перечнем требо-ваний и методами контроля, выбранными потребителем в соответствии с требованиями ТУ на кабель конкретного типа.

Изгибы и скручивання, которые претерпевает кабель, контролируют визуально в процессе резки, разделки и монтажа.

3.3. (Исключен, Изм. № 1).

3.4. Светопрохождение волокна контролируют любым средством освещения.

(Измененная редакция, Изм. № 1).

3.5. Наличие повреждений защитного покрытия волокий конт-

ролируют визуально невооруженным глазом.

3.6. Контроль отсутствия механических, химических и термических повреждений волокиа и остатков материала защитного покрытия и оптической оболочки осуществляют при увеличении не менее 35 крат на микроскопе типа МБС-10.

3.7. Контроль наличия жировых загрязнений и инородных частиц на стыкуемых поверхностях элементов монтажа осуществляют при увеличении не менее 25 крат на микроскопе типа МБС-10.

3.6, 3.7. (Измененная редакция, Изм. № 1).

3.8. Контроль комплектующих элементов монтажа проводят на соответствие требованиям ТУ на соединитель конкретного типа и рабочих чертежей на конкретные элементы.

3.9. Фиксацию арматурных деталей соединителя, находящихся

на кабеле, контролируют визуально невооруженным глазом.

3.10. Шероховатость торцевой поверхности волокиа и наконечника контролируют при помощи микроскопа типа интерферометра по ГОСТ 9847 с увеличением не менее 500 крат.

3.11. Отклонение от перпендикулярности торцевой поверхности наконечника относительно его оси контролируют на микроскопах

типов УИМ, ДИП, БМИ с увеличением не менее 50 крат.

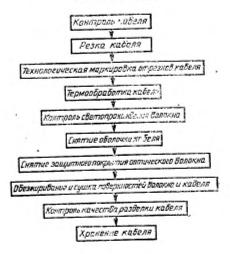
3.12. Фиксацию волокна и армирующего элемента контролируют при помощи микроскопа типа интерферометра по ГОСТ 9847 с увеличением 500 крат. При этом торец волокна не должен перемещаться относительно торцев армирующего элемента и наконечника.

3.13. Смещение осей сердцевины волокна и наконечника контролируют методом, аналогичным приведенному в приложении 3. 3.14. Шероховатость базовой поверхности наконечника контролируют на профилографе-профилометре по ГОСТ 19300 при вертикальном увеличении не менее 2000 крат.

Допускается производить контроль шероховатости базовой поверхности наконечника путем сравнения с эталонным образцом при увеличении не менее 10 крат.

3.13, 3.14. (Измененная редакция, Изм. № 1).

 Контроль оптических параметров кабельной части проводят в составе оптического соединителя и в соответствии с требо-


ваниями ГОСТ 26990.

3.16. Допускается применять другие приспособления, приборы и устройства, обеспечивающие требования конструкторской документации на соединитель конкретного типа, с параметрами не хуже указанных.

(Измененная редакция, Изм. № 1).

ПРИЛОЖЕНИЕ 1 Обязательное

Схема технологического процесса разделки оптического кабеля

ПРИЛОЖЕНИЕ 2 Обязательное

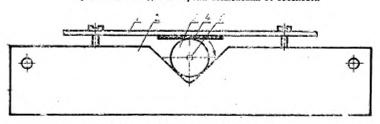
Примечание. В технически обоснованных случаях допускается изменять порядок приведенной схемы технологического процесса.

Гоорка соединителя

Контраль ееометрических и оптических параметров соединителя

МЕТОД КОНТРОЛЯ СМЕЩЕНИЯ СЕРДЦЕВИНЫ ВОЛОКНА И НАКОНЕЧНИКА ОПТИЧЕСКОГО СОЕДИНИТЕЛЯ

 Метод предназначен для измерения отклонения от соосности оси сердцевины волокна относительно цилиндрической поверхности наконечника оптического соединителя при технологической проверке в процессе монтажа кабельной части оттического соединителя.


2. Средства измерений и вспомогательные устройства

Для измерений допускается пользоваться микроскопами типа «интерферометр» и измерительными микроскопами по ГОСТ 9847 с увеличением не менее 500 крат.

2.2. Для закрепления изконечника за цилиндрическую поверхность 2,5 мм

пользуются приспособлением типа «призма» (черт. 1).

Приспособление для контроля отклонения от соосности

I — прижим; 2 — призма; 3 — наконечник; 4 — прокладка; 5 — серддевина волокна Черт. 1

 Для измерения с повышенной точностью допускается применять прикладвую телевизнонную установку.

Допускается использовать микроскоп с увеличением, обеспечивающим вы-

полнение требований п. 1.3.7.

(Измененная редакция, Изм. № 1).

- 2.4. Для подсветки волокна пользуются источником света.
- 3. Метод измерения
- 3.1. Метод основан на измерении минимального и максимального отклонения сердцевины волокна относительно линии или точки отсчета на шкале окудяра микроскова или видеоконтрольного устройства при осевом вращении контролируемого наконечника в призме.

3.2. На предметном столике микроскопа жестко крепят приспособления типа

«призма». Вращательное движение при этом застопорено.

- 3.3. Измеряемый наконечник закрепляют в приспособлении и юстируют подвижками предметного столика микроскопа так, чтобы при подсветке волокна светящаяся сердцевина совпала с центром окуляра или экрана.
- 3.4. При повороте наконечника вокруг своей оси изображение в окуляре или на экране при наличии отклонения от соосвости, изменит свое местоположение относительно своего первоначадьного подожения.

4. Подготовка к измерениям

4.1. Протирают торцевую и цилиндрическую поверхности наконечника длопчатобумажным батистом, смоченным этиловым ректификованным спиртом, и дают просохнуть.

4.2. Протирают рабочие поверхности призмы.

4.3. Накленвают на поверхность наконечника днаметром 6 мм дипкую денту и наносят риски по окружности через 45°.

4.4. Закрепляют контролируемый наконечник в приспособлении.

4.5. Другой полюс кабеля соединяют с источником света (подсветкой).

 Фокусируют изображение светящейся сердцевины в центре окуляра или экрана.

5. Определение отклонения от соосности

 5.1. Отклонение от соосности определяют, пользуясь окуляром MOB-1— 15 крат (черт. 2).

5.2. Совмещают вручную одну из рисок на ленте наконечника с риской на

приспособлении.

5.3. Поворотом микрометрического барабана MOB-1 — 15 крат подводят нижнюю лению перекрестия к вижней границе сердцевины волокна, фиксируют значение и записывают в таблицу.

z*	0	110	45	225	90	270	135	315	300
Значение а', коли- чество делений	a'237	a'_5—235	a'230	a ₆ —238	a_3 232	a'7—243	a'_4-232	a ₃ '-238	237

5.4. Проворачивая наконечник через 45° (совмещая последующие риски на наконечнике с риской на приспособлении), записывают значение а' с микрометрического барабана в таблицу.

Примечание. Нуловое значение должно совпадать с 360-градусным значением.

5.5 При $\alpha \! = \! 90\,^{\circ} \! = \! 270\,^{\circ}$ наибольшую разность значений ($\Delta a'$) вычисляют по формуле

$$\Delta a' = a'_1 - a'_3 \quad ; \tag{1}$$

∆a'=243-232=11 делений.

5.6. Радиальное биение (a'') вычисляют по формуле

$$a'' = K\Delta a' \sin 45''$$
, (2)

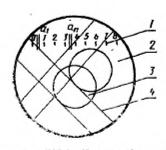
где К — цена деления шкалы;

$$a^{\circ}=0,3\cdot11\cdot0,7=2,31$$
 MKM.

5.7. Отклонение от соосности осей сердцевины волокна и наконечника (а) вычисляют по формуле

$$a = -\frac{a^{\nu}}{2}$$
; (3)

5.8. Пользуясь симметричным окуляром 15 крат со шизлой АТ-38, отклонение от соосности определяют следующим образом.


5.9. Микрометрическими вингами устанавливают светящуюся сердцевину так, чтобы при повороте наконечника в приспособлении описываемая окружность находилась в центре поля зрения окуляра.

5.10. Фиксируют максимальное число делений между точками a_1, a_2 (черт. 3).

Схема определения отклонения от

соосности с использованием окуляра MOB-1 - 15 KPAT

Схема определения отклонения от соосности с использованием симметричного окуляра 15 крат

врения микроскопа; S - сердценина воможна: 4 - линия перекрытия Черт. 2

МОВ-1 — 16 крат; 2 — поле 1 — поле зревня окуляра; 2 — сердцевина кроскопа; 3 — сердцевина во- ОВ; 3 — шкала АТ-38 Черт. 3

 Отклонение от соосности осей сердцевины волокна и наконечинка (a) вычисляют по формуле

$$a = K \frac{(a_s \pm a_1)}{2} \quad . \tag{4}$$

 5.12: Пользуясь прикладной телевизнонной установкой ПТУ-43 (черт. 4), отклонение от соосности определяют следующим образом.

Переводят изображение светящейся сердцевины из окуляра микро-

скопа на экран видеоконгрольного устройства ПТУ-43.

5.14. Микрометрическими винтами устанавливают светящуюся сердцевину на экране видеоконтрольного устройства так, чтобы при повороте наконечника в приспособлении описываемая сердцевиной окружность находилась в центре экрана.

5.15. Фиксируют максимальное число делений между точками а. а.

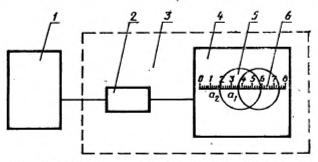
 Отклонение от соосности осей сердцевины волокна и наконечника (a) вычисляют по формуле

$$a = \kappa \frac{(a_1 - a_2)}{2} . \tag{5}$$

6. Погрешность измерения

Погрешность измерения является результатом наложения элементарных ошибок, вызываемых различными причинами. Основными составляющями суммарной погрешности являются:

C. 12 FOCT 26991-86


инструментальная погрешность измерення, которую определяют погрешностью применяемого средства измерения и вспомогательных устройств;

ошибка объекта, которая происходит из-за отклонений формы изделия от

правильной геометрической формы и шероховатости поверхности.

В зависимости от допустимой погрешности измерения необходимо назначить соответствующие допуски на точность наготовления: вспомогательного устройства, т. е. приспособления дая закрепления контроляруемого наконечника (см. черт. 1), и объекта измерения, т. е. изконечника оптического соединителя.

Схема контроля отклонения от соосности с использованием ПТУ-43

I — микроскоп; 2 — телевизновняя камера; J — прикладная телевизновная уставовка ПЛУ-К3; J — видеоконтрольное устройство; J — сердцевина воложиз; J — измерительная шкала

Черт. 4

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТАН И ВНЕСЕН Министерством промышленности средств связи

РАЗРАБОТЧИКИ

- В. Ф. Фаловский, канд. техн. наук (руководитель темы);
 Н. М. Попова
- УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 15.09.86 № 2672
- 3. ВВЕДЕН ВПЕРВЫЕ
- 4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕН-ТЫ

Обозначение НТД, на который дана ссыпка	Ном€р пункта, приложения	
FOCT 3—88 -	2.5	
ΓΟCT 12.0.004—90	2.2	
TOCT 12.1.003-83	2.11	
ГОСТ 12.1.004-91	2.4	
TOCT 12.1.005—88	2.5	
ГОСТ 12.1.007—76	2.5	
FOCT 12.1.019—79	2.3	
ГОСТ 12.1.030—81	2.3	
FOCT 12.2.007.0—75	2.3	
FOCT 12.3.002—75	2.1	
ГОСТ 12.3.019—80	2.3	
FOCT 12.4.010—75	2.6	
ГОСТ 12.4.013—85	2.7	
FOCT 5007—87	2.5, 2.6	
ГОСТ 9847—79	3.10, 3.12, приложе-	
	ние 3	
FOCT 18300—87	1.3.3	
COCT 1930086	3.14	
FOCT 26990—86	3.15	

- 5. Переиздание (ноябрь 1992 г.) с Изменением № 1, утвержденным в марте 1992 г. (ИУС 6—92)
- Постановлением № 189 от 02.03.92 снято ограничение срока действия

Редактор В. П. Огурцов Технический редактор В. Н. Прусакова Корректор А. И. Зюбан

Сдано в набор 15.10.92. Подп. в печ. 23.12.92. Усл. печ. л. 0.93. Усл. кр.-отт. 0.93. Уч.-изд. л. 0.80. Тир. 374 экз.