

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ИЗЛУЧЕНИЕ РЕНТГЕНОВСКОЕ И ГАММА-ИЗЛУЧЕНИЕ ДИФФУЗНЫЕ ГАЛАКТИЧЕСКИЕ

ХАРАКТЕРИСТИКИ УГЛОВОГО И ЭНЕРГЕТИЧЕСКОГО РАСПРЕДЕЛЕНИЙ

ГОСТ 25645.131-86

Издание официальное

3

IA 5 KON.

ИСПОЛНИТЕЛИ

С. И. Авдюшин, д-р техи. наук; В. М. Балебанов, канд. физ-мат. наук; А. В. Баноков, канд. техн. наук; А. С. Бирюков; Л. А. Вайнштейн, д-р физ-мат. наук; О. Н. Коэримных, канд. физ-мат. наук; С. Н. Кузнецов, д-р физ-мат. наук; В. М. Ломаюин, канд. физ-мат наук; Е. Н. Лесновский, канд. техн. наук; В. М. Ломаюин, канд. техн. наук; В. А. С. Мелиоранский, канд. физ-мат. наук; В. М. Никольский, д-р физ-мат. наук; В. М. Панков; Т. Н. Панфилова; И. Я. Ремизов, канд. техн. наук; И. А. Савенко , д-р физ-мат. наук;

в. И. Степакин, конд. техн. наук; П. М. Свидский, канд. физ-мат. наук; И. Б. Теппов, д-р физ.-мат. наук; И. П. Тиндо, канд. физ.-мат. наук;

СОГЛАСОВАНО с Государственной службой стандартных справочных данных [протокол от 11 ноября 1985 г. № 22]

УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 17 января 1986 г. № 137

ИЗЛУЧЕНИЕ РЕНТГЕНОВСКОЕ И ГАММА-ИЗЛУЧЕНИЕ ДИФФУЗНЫЕ ГАЛАКТИЧЕСКИЕ

Характеристики углового и энергетического распределений

ГОСТ 25645.131—86

Galactic diffuse gamma- and X- rays. Characteristics of angular and energy distributions

OKCTY 0080

Постановлением Государственного комитета СССР по стандартам от 17 января 1986 г. № 137 срок введения установлен с 01.01.87

 Настоящий стандарт устанавливает исходные параметры и зависимости, характеризующие угловое и энергетическое распределения потока фотонов с энергнями от 20 кэВ до 200 МэВ диффузных галактических рентгеновского и гамма-излучений.

Стандарт предназначен для использования в расчетах потока фотонов, падающего на открытые (незатененные) поверхности элементов технических устройств в космическом пространстве.

- Диффузные галактические рентгеновское и гамма-излучения представляют в виде суммы спектрально-непрерывного излучения линейного источника, находящегося на небесной сфере на широтах b от минус 10 до плюс 10°, долготах i от 310 до 50° и спектрально-непрерывного излучения протяженного источника со светимостью, зависящей от широты b.
- Энергетическое распределение линейного источника характеризуют спектральной плотностью потока фотонов, отнесенной к единице линейного угла, I₁, с⁻¹·см⁻²·кэВ⁻¹·рад⁻¹, определяемой по формуле

$$I_1 = A_1 \cdot E^{-1}$$
, (1)

где E - энергия фотона, кэВ;

 $A_{\rm I}, \ \gamma_{\rm I}$ — параметры, значения которых приведены в таблице.

Параметр	ы энергетическ	ого спектра	линейного	источника	диффузных
	галактических	рентгеновск	кого и гама	на-излучени	riii.

Диалазов эксрпик Е, кэВ	Aı	7.
От 20,0 до 2,5-10 ³	337,0	2,8
от 2.5-10° до 2,0-10°	1,3.10-2	1,5

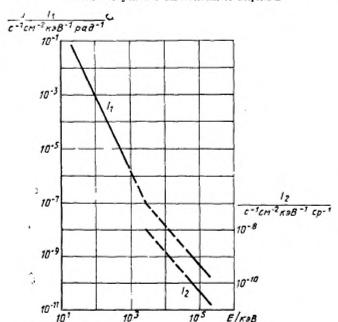
4. Энергетическое и угловое распределения протяженного источника характеризуют спектральной плотностью потока фотонов, отнесенной к единице телесного угла, I_2 , $c^{-1} \cdot c m^{-2} \cdot k \ni B^{-1} \cdot c p^{-1}$ определяемой по формуле

$$I_2 = A_2 \cdot E^{-\tau_2} \cdot [1 - \exp(-|b|/\alpha)]/\sin|b|,$$
 (2)

где b -- галактическая широта, градус;

$$A_2=1,42\cdot 10^{-3};$$

 $\alpha=8,6;$
 $\gamma_2=1,5.$


 Значения спектральной плотности I, равной сумме I₁ и I₂, потока фотонов диффузного галактического излучения, падающего на площадку произвольной ориентации, для различных энергий фотонов приведены в справочном приложении 1. Программа расчета этих значений приведена в справочном приложении 2.

 Данные для приближенной оценки потоков фотонов диффузных галактических рентгеновского и гамма-излучений приве-

дены на чертеже.

Примечание. В диапазоне энергий от 10^5 до $3.5\cdot 10^4$ кзВ экспериментальные данные отсутствуют. В этом диапазоне расчет по формулам (1) и (2) позволяет получить экстраполированные значения I_1 , I_2 , обозначениые на чертеже пунктирной линией,

 Параметры и зависимости, приведенные в настоящем стандарте, обеспечивают расчет потока фотонов диффузных галактических рентгеновского и гамма-излучений с погрешностью не более 30%. Спектральная плотность потока фотонов диффузных рентгеновского и гамма-излучений в зависимости от энергии E

 I_1 — для ланейного источника; I_2 — для протяженного источника в направлении на галактический полюс ($b:-90^\circ$

ПРИЛОЖЕНИЕ 1 Справочное

Таблица 1 Спектральная плотность потока фотонов / диффузного галактического излучения, падающего на площадку в 1 см² для энергии 20 кэВ

Галакти.	I_{r} с $^{-1}$ · см $^{-2}$ -жэВ $^{-1}$ · ср $^{-1}$. при галактической широте b , градус.					
ческан Долгота /	0	50	20	30	40	
0°	0,116E 00	0,115E 00	0.109E 00	0,101E 00	0,892E-0	
10	0,115E 00	0,113E 00	0,108E 00	0,993E01	0,879E-0	
20	0,109E 00	0,108E 00	0,103E 00	0,948E01	0,838E-0	
30	0,101E 00	0,993E01	0,948E-01	0,873E01	0,773EC	
40	0,892E-01	0,879E-01	0,839E01	0,773E-01	0,684E-0	
50	0,760E-01	0,749E-01	0.715E-01	0,659E-01	0,584E-(
60	0,628E01	0,619E01	0,591E-01	0,545E-01	0,483E-0	
70	0,500E-01	0,493E-01	0,470E 01	0,434E01	0,385E-0	
80	0,380E-01	0,374E-01	0,358E-01	0,330E-01	0,293E-0	
90	0,271E-01	0,268E01	0,256E01	0,236E-01	0,210E-0	
100	0,178E-01	0,175E-01	0,168E-01	0,155E-01	0,138E-0	
110	0,102E-01	0,100E-01	0,962E-02	0,893E-02	0,801E-	
120	0,458E02	0,453E-02	0,436E-02	0,409E-02	0,373E-4	
130	0,115E-02	0,115E-02	0,114E-02	0,112E-02	0,110E-	
140	0,000	0,853E05	0,267E-04	0,587E04	0,107E-	
150	0,000	0,000	0,000	0,000	0,000	
160	0,000	0,000	0,000	0,000	0,000	
170	0,000	0,000	0,000	0,000	0,000	
180	0,000		0,000	0,000	0,000	
190	0,000	0,000	0,000	0,000	0,000	
200	0,000	0,000	0,000	0.000	0,000	
210	0,000		0,000	0,588E04	0,000 0.108E—	
220	0,395E-09 0,115E-02	0,856E-05	0,268E-04 0,114E-02	0.112E-02	0,108E-	
230 240	0,115E-02 0,458E-02	0,115E-02	0.436E-02	0,409E-02	0.373E-	
250	0,102E-01	0,453E-02	0,962E-02	0.894E02	0,802E-	
260	0.102E-01 0.178E-01	0,100E-01	0.168E-01	0.155E-01	0.138E-	
270	0,272E-01	0,175E-01 0,268E-01	0,168E-01 0,256E-01	0,155E-01	0.210E-	
280	0.380E-01	0,374E-01	0,256E-01	0,330E-01	0,210E-	
290	0.500E-01	0.493E-01	0,470E-01	0,434E-01	0,285E-	
300	0.628E-01	0.619E-01	0.591E-01	0,545E-01	0,483E-	
310	0,760E-01	0.749E-01	0,591E-01	0,659E-01	0,584E-	
320	0.892E-01	0.879E-01	0.839E-01	0,059£-01	0,684E-4	
330	0,101E 00	0,993E-01	0,948E01	0.873E-01	0.773E-	
340	0,109E 00	0.108E 00	0,103E 00	0.948E-01	0.838E-	
350	0.115E 00	0,113E 00	0,108E 00	0,993E-01	0.879E-	

Продолжение табл. 1

Галекты- ческая долгота І	I_r с \rightarrow 1 - см \rightarrow 2 - кэ $B\rightarrow$ 1 - ср \rightarrow 1 , при голоктической широте b , градус.					
	80	60	70	80	90	
00	0.749E-01	0.582E01	0,398E01	0,204E-01	0.581E -0	
10	0.737E-01	0.573E-01	0.392E01	0,201E01	0.581E-05	
20	0.703E-01	0,547E-01	0.374E01	0.194E-01	0.581E0	
30	0.648E-01	0.504E01	0.346E-01	0.182E-01	0.581E0	
40	0.575E01	0.449E-01	0,310E-01	0.167E-01	0.581E-0	
50	0.492E-01	0.386E01	0.269E01	0.148E-01	0.581E-0	
60	0.407E01	0,320E-01	0.225E-01	0.129E-01	0.581E-0	
70	0.325E-01	0,256E-01	0.181E-01	0.108E-01	0.581E-0	
80	0.248E-01	0.196E-01	0.140E-01	0.885E-02	0.581E-0	
90	0.178E-01	0.142E-01	0.103E01	0.699E-02	0.581E-0	
100	0.118E-01	0.948E-02	0,711E-02	0.534E02	0.581E-0	
110	0.691E-02	0.568E-02	0.451E-02	0.392E-02	0,581E-0	
120	0.331E-02	0.288E02	0.258E-02	0.276E-02	0.581E-0	
130	0.110E-02	0.114E-02	0.128E-02	0.185E-02	0.581E-0	
140	0.181E-03	0.296E-03	0.512E-03	0.117E-02	0.581E-0	
150	0,158E-05	0.254E-04	0.139E-03	0.696E-03	0.581E-0	
160	0.000	0.000	0.152E-04	0.388E-03	0.581E-0	
170	0.000	0.000	0.000	0.218E-03	0.581E-0	
180	0.000	0,000	0.000	0.163E-03	0.581E-0	
190	0,000	0.000	0,000	0.218E-03	0.581E0	
200	0.000	0.000	0.152E-04	0.388E-03	0.581E-0	
210	0.159E-05	0.254E-04	0.139E-03	0.696E-03	0.581E-0	
220	0.181E-03	0.296E-03	0.512E-03	0.117E-02	0.581E-0	
230	0.110E- 02	0,114E-02	0,128E-02	0.185E-02	0.581E-0	
240	0.331E-02	0.288E-02	0.258E-02	0.276E-02	0.581E-0	
250	0,691E-02	0.568E -02	0.451E-02	0.392E-02	0.581E	
260	0,091E-02 0,118E-01	0,948E-02	0.711E02	0,534E-02	0.581E-0	
270	0.178E-01	0,142E-01	0.103E01	0.699E-02	0,581EC	
280	0.248E-01	0.196E-01	0.140E-01	0.885E-02	0.581E-0	
		0.256E-01	0.181E-01	0.108E-01	0.581E- (
290 300	0,325E-01	0,250E-01	0.225E01	0.129E-01	0.581E	
	0,407E-01		0,269E-01	0.148E -01	0.581E-0	
310	0,492E-01	0,386E-01	0.310E-01	0,140E 01	0.581E-0	
320	0,575E-01	0,449E-01 0,505E-01	0,310E-01	0.182E-01	0.581E	
330	0,648E-01	0,505E-01 0,547E-01	0.374E-01	0.194E-01	0,581E0	
340	0,703E-01			0,194E-01	0.581E-0	
350	0,737E-01	0,573E-01	0,392E-01	0,2012-01	0,001E-0	

Примечания:

^{1.} Значение параметров / с литерой Е следует понимать как произведение коэффициента, стоящего до Е, на десять в степсии, равной числу, стоящему после Е, со своим знаком.

 ¹ н b - координаты вормали к единичной площадке.
 3 Для получения спектральной плотности потока фотовов диффузиого галактического излучения с энергией свыше 20 до 2.5 10 кэВ необходимо число, приведенное в таблице, умножить на значение

Таблица 2 Спектральная плотность потока фотонов I диффузного галактического излучения, падающего на площадку в 1 см² для энергия 3,5 · 10° кэВ

Галакти-	I, с-1 · см · КЭВ-1 · ср-1, при галактической широте b, градус.					
Acerora 2	0	10	20	30	40	
00	0,512E-08	0.506E-08	0.486E08	0.455E08	0.414E - 08	
10	0.507E-08	0.501E-08	0.482E-08	0.451E-08	0,410E-08	
20	0,493E-08	0.487E08	0.469E-08	0,439E08	0.399E-0	
30	0.470E-08	0.464E-08	0.447E08	0.419E-08	0.381E0	
40	0.438E08	0.433E-08	0.417E-08	0,392E08	0,357E-0	
50	0.402E-08	0,397E-08	0.383E- 08	0.361E -08	0.330E-0	
60	0.366E08	0.362E-08	0.350E-08	0.330E-08	0.303E-0	
70	0.331E-08	0.328E-08	0.317E-08	0.299E-08	0.276E -0	
80	0.299E-08	0.295E-08	0.286E - 08	0,271E-08	0.251E-0	
90	0.269E-08	0.266E-08	0.258E-08	0.245E-08	0.228E-0	
100	0.244E08	0,241E-08	0.234E- 08	0,223E-08	0.209E · 0	
110 i	0.223E-08	0.221E08	0.215E-08	0,206E-08	0.193E-0	
120	0.208E-08	0,206E08	0,201E-08	0,193E-08	0.181E-0	
130	0,199E-08	0.197E-08	0.192E-08	0,185E 08	0.174E-0	
140	0,196E-08	0.194E-08	0.189E-08	0.182E-08	0.172E0	
150	0.196E-08	0.194E-08	0.189E-08	0.182E-08	0.171E 0	
160	0.196E-08	0,194E-08	0.189E08	0.182E-08		
170	0.196E-08	0.194E-08	0,189E-08	0.182E-08	0.171E-08 0.171E-08	
180	0.196E-08	0,194E-08	0,189E-08			
190	0.196E-08	0,194E-08	0,189E-08	0,182E-08	0,171E-0	
200	0.196E-08	0.194E08		0,182E-08	0,171E-0	
210	0.196E-08		0,189E-08	0,182E08	0,171E-0	
220	0.196E-08	0,194E-08	0,189E-08	0.182E- 08	0,171E-08	
230	0,199E-08	0,194E-08	0,189E-08	0,182E-08	0,172E-08	
240	0.208E-08	0,197E-08	0,192E-08	0,185E 08	0.174E - 0.0	
250	0,200E-08	0,206E-08	0,201E-08	0,193E-08	0,181E-0	
260	0.244E-08	0,221E-08	0,215E-08	0,206E-08	0,193E 0	
270		0,241E-08	0.234E-08	0,223E-08	0,209E0	
280	0,269E-08	0,266E-08	0,258E-08	0,245E08	0,228E-0	
290	0,299E-08	0,295E08	0,286E-08	0,271E-08	0,251E0	
300	0,331E-08	0,328E-08	0,317E-08	0,299E-08	0,276E-08	
310	0,366E08	0,362E 08	0,350E08	0,330E-08	0,303E-0	
	0,402E-08	0,397E-08	0,383E 08	0,361E-08	0,330E08	
320	0,438E-08	0,433E 08	0,417E-08	0,392E-08	0,357E-0	
	0,470E-08	0,464E-08	0,447E08	0,419E-08	0,381E-0	
340	0,493E-08	0,487E-08	0,469E 08	0.439E-08	0,399E-0	
350	0,507E-08	0,501E08	0,482E-08	0,451E-08	0,410E-06	

Продолжение табл. 2

Галакти- ческая долгога	$I, e^{-1} \cdot e^{-2} \cdot kaB = \cdot \cdot ep^{-1}$, при галактической широге b , градуе.					
	60	60	70	80	90	
000	0.363E08	0.305E-08	0.243E-08	0.180E08	0.136E-0	
10	0.360E-08	0,302E 08	0.241E08	0.179E-08	0.136E-0	
20	0.350E-08	0.295E-08	0.236E08	0.177E-08	0.136E-0	
30	0.335E-08	0.284E-08	0.229E -08	0.174E08	0.136E-0	
40	0.316E 08	0.269E-08	0.219E -08	0.170E -08	0,136E-0	
50	0.293E-08	0.251E-08	0.207E-08	0.165E-08	0.136E-0	
60	0,270E 08	0.234E08	0.196E -08	0.160E - 08	0.136E-0	
70	0.248E08	0.216E-08	0.184E-08	0.154E-08	0.136E-0	
80	0.227E-08	0.200E08	0.173E08	0.149E-08	0.136E-0	
90	0.208E08	0,185E-08	0.163E-08	0.144E-08	0.136E-0	
100	0.191E-08	0.172E-08	0.154E-08	0.139E08	0.136E-0	
110	0.178E-08	0.162E-08	0.147E-08	0.135E-08	0.136E-0	
120	0.168E- 08	0.155E-08	0.142E -08	0.132E08	0.136E-0	
130	0.162E-08	0,150E-08	0.138E08	0.130E- 08	0,136E-0	
140	0.160E-08	0.148E-08	0.136E-08	0.128E-08	0.136E-0	
150	0.159E-08	0.147E-08	0.135E-08	0,127E-08	0.136E-0	
160	0.159E-08	0.147E-08	0.135E-08	0.126E- 08	0.136E-0	
170	0.159E08	0.147E-08	0.134E-08	0,125E-08	0,136E-0	
180	0,159E-08	0.147E-08	0,134E-08	0.125E-08	0.136E-0	
190	0.159E-08	0.147E-08	0.134E08	0.125E-08	0.136E-0	
200	0.159E08	0.147E-08	0.135E-08	0,126E-08	0.136E-0	
210	0.159E-08	0.147E-08	0.135E-08	0.127E-08	0.136E-0	
220	0.160E-08	0,148E-08	0.136E-08	0,128E-08	0.136E-0	
230	0.162E-08	0,150E-08	0.138E-08	0,130E-08	0.136E-0	
240	0.168E-08	0,155E -08	0,142E-08	0,132E-08	0.136E-0	
250	0,178E08	0.162E08	0.147E-08	0,135E-08	0.136E-0	
260	0.191E-08	0,172E-08	0.154E-08	0,139E-08	0.136E-0	
270	0,208E08	0,185E-08	0.163E08	0,144E-08	0.136E-C	
280	0,227E-08	0.200E-08	0.173E08	0.149E-08	0.136E-0	
290	0.248E08	0.216E-08	0.184E-08	0.154E-08	0.136E-0	
300	0.270E-08	0.234E-08	0,196E-08	0,160E-08	0.136E-0	
310	0,293E08	0.251E-08	0.207E-08	0,165E-08	0.136E-0	
320	0.316E08	0.269E-08	0,219E-08	0,170E-08	0.136E-0	
330	0.335E 08	0,284E-08	0.229E-08	0.174E-08	0.136E-0	
340	0.350E-08	0.295E-08	0,236E08	0.177E-08	0.136E-0	
350	0,360E-08	0,302E-08	0,241E-08	0,179E-08	0.136E0	

Примечания:

2. I и b — координаты вормали к единичной площадке,

Значение параметра I с литерой E следует понимать как произведение коэффициента, стоящего до E, на десять в степени, равной числу, стоящему после E, со своим знаком.

Для диффузного галактического излучения с энергией свыше 3,5 10⁴ до 2 10⁵ кэВ необходимо число, приведенное в таблице, умножить на значение (3,5 10⁴)^{1,5}

70

CONTINUE AL=31 * AK

Программа расчета спектральной плотности потока фотонов диффузного галактического излучения

SBO(10), CBO(10), SB(181), CB(181), SL(360), Z(181), AII(10,36), AI2(10,36), D(22,101), DIMENSION IN(10), 1 CL(360). SB1(181), CB1(181), SL1(360), CL1(360) 2 ДАТА NB, NL/15, 60/ PI = ATAN(1.) 4. AK=PI/18. SHB=2.* AK/NB SHL=10.* AK/NL NBB = NB + 1NLL-NL+I D(1, 1) = 0.25D(1, NLL) = 0.25D(NBB, 1) = 0.25D(NBB, NLL) = 0.25 DO 10 I-2, NL D(1, 1) = 0.5D(NBB, I) = 0.5CONTINUE 10 DO 20 I=2, NB D(I, 1) = 0.5D(I, NLL) = 0.520 CONTINUE DO 40 I=2, NB DO 30 J-2, NL D(1, J) = 1CONTINUE 30 40 CONTINUE DEL=SHB*SHL DO 50 I=1.10 $IN(I) = (I-1)^* 10$ CONTINUE 50 DO 180 1-1,36 $ALO = (I--I)^*AK$ SLO=SIN(ALO) CLO=COS(ALO) DO 170 J=1, 10 IF(I,GT,1) GOTO 60 BO-(j-1)*AK SBO(J) = SIN(BO)CBO(J) = COS(BO)CONTINUE 60 B--1.* AK S=0. DO 110 K=1, NBB IF(J.GT:1) GOTO 70 SB(K) = SIN(B) $CB(K) \rightarrow COS(B)$

```
SV=0.
     DO 100 L=1. NLL
     IF(K.GT.I) GOTO 80
     SL(L) = SIN(AL)
     CL(L) -COS(AL)
     CONTINUE
     F = SB(K)*SBO(J) + CB(K)*CBO(J)*(SL(L)*SLO+CL(L)*CLO)
     IF (F.LÈ.Ó.) GOTÓ 90
     SV = SV + F*CB(K)*D(K.L)
     AL = AL + SHL
     CONTINUE
     S=S+SV
     B-B+SHB
     CONTINUE
     AI1 (J, I) - 0.22*S*DEL
     B = -9.* AK
     T=0.
     DO 160 K=1, 136
     IF(J.GT.1) GOTO 120
     SB1(K) = SIN(B)
     CB1(K) = COS(B)
     Z(K) = 2.24E - 10^{\circ}(1 - EXP(-ABS(B)/0.15))/SIN(ABS(B))
120
     CONTINUE
     AL=0
     TV = 0.
     DO 150 L=1, 217
     IF(K.GT.1) GOTO 130
     SL1(L) = SIN(AL)
     CL1(L) = COS(AL)
130
     CONTINUE
     F=SB1(K)*SBO(J)+CB1(K)*CBO(J)*(SL1(L)*SLO+CL1(L)*CLO)
     IF(F.GE.0.) TV=TV+F*Z(K)*CBL(K)
140
     AL = AL + SHL
150
     CONTINUE
     T = T + TV
     B=B+SHB
     CONTINUE
     A12(J, 1) = (5, 92 E - 9*S + I)*DEL
170
     CONTINUE
180
     CONTINUE
     PRINT 190
     FORMAT(// 40X, ' ПЕРВЫЙ ВАРИАНТ', //)
190
     PRINT 200. (IN(I), I=1, 10)
200
     FORMAT (12X, 10(12, 8X) //)
     DO 210 I-1.36
     J = (I-1) * 10
     PRINT 240, J, (A11(K, I), K=1, 10)
210
     CONTINUE
     PRINT 220
     FORMAT (//, 40X, ' BTOPON BAPHAHT', //)
220
     PRINT 200, (IN(I), I=1, 10)
     DO 230 I=1, 36
     J = (I-1)*10
     PRINT 240, J. (AI2(K, I), K=1, 10)
```

80

90

100

110

160

Стр. 10 ГОСТ 25645.131-86

230 CONTINUE 240 FORMAT (3X, 13, 10E10.3,/), END

> Редактор А. И. Ломина Технический редактор М. И. Максимова Корректор В. Ф. Малютина

Сламо в наб. 10.02.86 Подя. в печ. 24.09.86 9,75 усл. п. л. 9,75 усл. вр.-отт. 9,76 уч.-вад. л. Тир. 6000