ГОСУДАРСТВЕННЫЯ СТАНДАРТ СОЮЗА ССР

медь высокой чистоты

Полярографические методы анализа

ГОСТ 27981.6—88

Copper of high purity. Methods of polarographic analysis

OKCTY 1709

Срок действия с 01.01.1990 до 01.01.2000

Несоблюдение стандарта преследуется по закону

Настоящий стандарт устанавливает полярографические методы определения кадмия (при массовой доле от 0,00005 до 0,0015 %), сурьмы (при массовой доле от 0,00006 до 0,0015%) и теллура (при массовой доле от 0,00003 до 0,0001 %) в меди высокой чистоты.

1. ОБЩИЕ ТРЕБОВАНИЯ

Общие требования к методу анализа и требования безопасности при выполнении анализов по ГОСТ 27981.0.

2. МЕТОД ОПРЕДЕЛЕНИЯ КАДМИЯ

Метод основан на полярографировании раствора, содержащего кадмий, на фоне 0,4 М соляной кислоты и 0,12 М хлорида аммония. Потенциал пика по отношению к донной ртути минус 0,8 В. Предварительно кадмий отделяют от меди путем цементации на металлическом алюминии.

2.1. Аппаратура, реактивы, растворы

Полярограф типа ППТ-1 или ПУ-1.

Весы лабораторные аналитические типа ВЛР (или другого типа) 2-го класса точности.

Стаканы B-1-250 ТХС по ГОСТ 25336.

Колбы конические Ки-1-250-14/23 ТС по ГОСТ 25336.

Воронки лабораторные В-36-80 ХС по ГОСТ 25336.

Колбы мерные 2-25-2, 2-100-2, 2-200-2, 2-1000-2 по ΓΟCT 1770.

Пипетки 5-2-1, 6-2-5, 6-2-10, 2-2-20 по ГОСТ 20292.

Цилиндры 1-5, 1-10, 1-25, 1-50 по ГОСТ 1770.

Фильтр бумажный (желтая лента).

Кислота азотная по ГОСТ 4461, разбавленная 1:1.

Кислота соляная по ГОСТ 3118, разбавленная 1:1, и раствор 0,05 моль/дм³.

Алюминий гранулированный особой чистоты.

Аммоний хлористый по ГОСТ 3773.

Азот газообразный по ГОСТ 9293.

Формалин по ГОСТ 1625.

Кадмий по ГОСТ 1467.

2.2. Подготовка к анализу

2.2.1. Приготовление стандартных растворов

Раствор А: навеску кадмия массой 0,100 г растворяют при нагревании в 15 см³ азотной кислоты, разбавленной 1:1. Раствор выпаривают до объема 2-3 см3, приливают 10 см3 соляной кислоты и выпаривают до влажных солей. Вапаривание с 5 см³ соляной кислоты повторяют два раза. Затем к остатку приливают 5 см3 соляной кислоты и 50 см³ воды, растворяют соли при нагревании. Охлаждают, помещают раствор в мерную колбу вместимостью 100 см³ и доводят водой до метки.

1 см3 раствора A содержит 1 мг кадмия.

Раствор Б: отбирают 10 см³ раствора А, помещают в мерную колбу вместимостью 1000 см3 и доводят водой до метки.

1 см³ раствора Б содержит 0,01 мг кадмия.

Раствор В: отбирают 10 см3 раствора Б и помещают в мерную колбу вместимостью 200 см3, доводят водой до метки; используют свежеприготовленный раствор.

1 см3 раствора В содержит 0,0005 мг кадмия.

2.3. Проведение анализа 2.3.1. Навеску меди массой 1,000 г помещают в коническую колбу вместимостью 250 см3, приливают 20 см3 азотной кислоты, разбавленной 1:1, и растворяют при комнатной температуре. Затем нагревают и выпаривают раствор до влажных солей. Остаток обрабатывают 10 см³ соляной кислоты и выпаривают досуха. Для полного удаления нитратионов остаток обрабатывают еще три раза: один раз в 2-3 см3 формалина и два раза с 10 см3 соляной кислоты.

К остатку приливают 100 см3 с молярной концентрацией 0,05 моль/дм3 соляной кислоты, добавляют 1,5 г хлорида аммония растворяют соли. В раствор вводят 6-8 гранул металлического алюминия (общим весом от 3,5 до 4,0 г) и в течение (60±5) мин проводят цементацию меди при периодическом перемешивании.

Раствор, с выделившейся на гранулах медью, фильтруют через бумажный фильтр, помещая фильтрат в стакан вместимостью 250 см³.

Стенки колбы обмывают 2—3 раза нагретой до кипения водой и 5—6 раз этой же водой фильтр, присоединяют промывные воды к основному фильтрату.

Объединенный фильтрат упаривают до объема 10 см³, помещают в мерную колбу вместимостью 25 см⁸ и доводят водой до метки.

Из раствора удаляют кислород продуванием азотом в течение 10—15 мин и проводят полярографирование в интервале потенциалов от минус 0,5 до минус 0,9 В по отношению к донной ртути.

2.3.2. Определяют коэффициент пересчета методом добавок. Для этого 1 см³ стандартного раствора В помещают в колбу с навеской меди и далее продолжают анализ, как описано в п. 2.3.1.

Коэффициент пересчета К вычисляют по формуле

$$K = \frac{H_1 - H_2}{C} ,$$

где H_1 — высота суммарного пика, соответствующая сумме высот пиков полярограммы кадмия в анализируемом растворе и добавки кадмия в этот раствор, мм;

Н₂ — высота пика кадмия в анализируемом растворе, мм;

С — массовая концентрация кадмия, введенного в раствор пробы в виде добавки, мг/см³.

2.4. Обработка результатов

 2.4.1. Массовую долю кадмия (X) в процентах вычисляют по формуле

$$X = \frac{H_2 \cdot V}{K \cdot m \cdot 10^4} ,$$

где V - вместимость мерной колбы, см3;

К — коэффициент пересчета;

т - масса навески меди, г;

Н₂ — высота пика кадмия в растворе анализируемой пробы, мм.

2.4.2. Абсолютные допускаемые расхождения результатов двух параллельных определений при доверительной вероятности P=0,95 (d_n — показатель сходимости) и результатов анализа одной и той же пробы, полученных в двух лабораториях, а также в одной лаборатории, но в различных условиях (D — показатель воспроизводимости), не должны превышать значений, приведенных в табл. 1.

2.4.3. Контроль правильности результатов анализа осуществля-

ют с помощью стандартных образцов состава меди.

Результаты анализа проб признаются правильными, если воспроизведенная массовая доля компонента в стандартном образце отличается от аттестованной характеристики не более чем на значение 0,71 D, которое приведено в табл. 1.

	Абсолютные допускаемые расхождения, %. результатов	
Массовая доля кадмия, %	параллельных опре- делений d _H	анализов D
От 0,00005 до 0,00015 включ.	0,00003	0,00004

2.4.4. Допускается контроль правильности результатов анализа проводить методом добавок. Массу добавки (объем стандартного раствора) выбирают таким образом, чтобы аналитический сигнал определяемого компонента увеличился в 2—3 раза по сравнению с данным аналитическим сигналом в отсутствии добавки.

Результаты анализа проб считаются правильными, если найденная величина добавки отличается от введенной ее величины не более чем на $0.71 \ V \ \overline{D_1^2 + D_2^2}$, где D_1 и D_2 — допускаемое расхождение двух результатов анализа для пробы и пробы с добавкой.

3. МЕТОД ОПРЕДЕЛЕНИЯ СУРЬМЫ

Метод основан на электрохимическом восстановлении ионов сурьмы на фоне 6 М соляной кислоты, содержащей 0,19 М натрия фосфорноватистокислого.

Потенциал пика сурьмы по отношению к донной ртути минус

0,15 B.

Отделение сурьмы от мешающих примесей проводят соосаждением ее на гидроксиде железа.

3.1. Аппаратура, реактивы, растворы

Полярограф типа ПУ-1 (переменно-токовый режим) или аналогичного типа.

Весы аналитические лабораторные 2-го класса точности любого типа.

Эксикатор по ГОСТ 25336.

Стаканы B-1-250 ТС по ГОСТ 25336 или H-1-250 ТХС по ГОСТ 25336.

Колбы мерные 2—25—2, 2—50—2, 2—100—2, 2—200—2. 2—1000—2, 1—1000—2, 1—200—2 по ГОСТ 1770.

Цилиндры 1—10, 3—25, 3—250 по ГОСТ 1770.

Пипетки 4-2-1, 4-2-2, 5-2-5 по ГОСТ 20292.

Фильтр бумажный средней плотности (желтая лента) с фильтробумажной массой.

Чашки фарфоровые по ГОСТ 9147.

Кислота азотная по ГОСТ 4461, разбавленная 1:1.

Кислота серная по ГОСТ 4204, разбавленная 1:1 и 1:5.

Кислота соляная по ГОСТ 3118, разбавленная 1:1.

Аммиак водный по ГОСТ 3760, разбавленный 1:1, 2 %-ный

раствор.

Квасцы железоаммонийные раствор 43 г/дм³: 8,6 г железоаммонийных квасцов растворяют в 150 см³ воды, содержащей 20 см³ серной кислоты, помещают в мерную колбу вместимостью 200 см³ и доводят водой до метки.

I см³ раствора содержит 5 мг железа.

Гидразин сернокислый по ГОСТ 5841, перекристаллизированный; раствор 50 г/дм³: к 70 г гидразина приливают 200 см³ воды, нагретой до кипения, и перемешивают до растворения соли. Раствор упаривают, ие доводя до кипения, до образования кристаллической пленки. Охлаждают при комнатной температуре, раствор над кристаллами сливают, а полученную соль сушат в фарфоровой чашке в эксикаторе.

Азот газообразный по ГОСТ 9293.

Аммоний хлористый по ГОСТ 3773, раствор 20 г/дм3.

Натрий фосфорноватистокислый (гипофосфит натрия) по ГОСТ 200.

Сурьма по ГОСТ 1089.

3.2. Подготовка к анализу

Приготовление стандартных растворов

Раствор А: навеску тонкорастертой сурьмы массой 0,100 г помещают в стакан (или колбу) вместимостью 200—300 см³, приливают 20 см³ серной кислоты и растворяют при сильном нагревании. Затем охлаждают, добавляют 150—200 см³ воды, перемешивают и вновь охлаждают. Приливают 80 см³ серной кислоты, охлаждают и помещают раствор в мерную колбу вместимостью 1000 см³ и доводят водой до метки.

1 см⁸ раствора А содержит 0,1 мг сурьмы.

Раствор Б: отбирают пипеткой 5 см³ раствора А, помещают в мерную колбу вместимостью 50 см³, приливают 10 см³ серной кислоты, разбавленной 1:1, и доводят водой до метки.

1 см3 раствора Б содержит 0,01 мг сурьмы.

Раствор В: отбирают пилеткой 1 см³ раствора А, помещают в мерную колбу вместимостью 100 см³, приливают 10 см³ серной кислоты, разбавленной 1:1, доводят водой до метки: раствор готовят в день проведения анализа.

1 см3 раствора В содержит 0,001 мг сурьмы.

3.3. Проведение анализа

 3.3.1. На стаканах, в которых будут проводить анализ меди, наносят стеклографитом метки, соответствующие 50, 100 и 150 см.

3.3.2. Навеску меди массой 2,000 г помещают в стакан вместимостью 250 см³, приливают 20 см³ азотной кислоты, разбавленной 1:1, и оставляют без нагревания до прекращения бурной реакции выделения оксидов азота. Затем раствор нагревают и выпаривают до влажных солей. К остатку приливают 30 см³ соляной имедоти: воды до объема 100 см³ и нагревают до растворения солей. Доводят до кипения, снимают с плиты и сразу вводят при перемешивании 13—15 см³ раствора гидразина, оставляют без нагревания на 10—15 мин, при этом 2—3 раза перемешивают.

К полученному раствору приливают воды до объема 100 см³, вводят 1 см³ раствора железоаммонийных квасцов и осаждают сурьму на гидроксиде железа аммиаком, разбавленным 1:1, до появления устойчивой синей окраски раствора и еще добавляют

5 см3.

Дают осадку скоагулироваться в течение 20—25 мин и затем фильтруют на фильтр «желтая лента», в конус которого вложено немного фильтробумажной массы. Осадок на фильтре и стакан промывают 5—6 раз нагретой до кипения водой, содержащей 2 % хлористого аммония и 2 % аммиака.

Затем осадок растворяют на фильтре 20 см³ горячей соляной кислоты, разбавленной 1:1, промывают 3—4 раза горячей водой, собирая фильтрат в стакан, в котором проводили осаждение гидро-

ксида железа. Общий объем раствора должен быть 50 см3.

Полученный раствор нагревают до кипения, снимают с плиты и сразу вводят при перемешивании 2 см³ раствора гидразина, оставляют стоять на 10—15 мин. Затем приливают воды до объема 100 см³, вводят 0,2 см³ железоаммонийных квасцов, перемешивают и повторяют осаждение гидроксидов аммиаком, разбавленным 1:1. Далее фильтруют, промывают осадок, как указано выше.

Осадок растворяют на фильтре в 20 см³ горячей серной кислоты, разбавленной 1:5, промывают фильтр 2—3 раза горячей водой, собирая фильтрат в стакан, в котором проводили осаждение. Приливают 5 см³ серной кислоты, разбавленной 1:1, и выпаривают раствор до появления белых паров, добавляют 5—6 капель азотной кислоты и снова выпаривают до белых паров. Снова охлаждают, смывают стенки стакана водой и выпаривают до появления белых паров: операцию повторяют.

Раствор выпаривают до влажных солей, приливают 20 см³ соляной кислоты, разбавленной 1:1, добавляют 0,4—0,5 г гипофосфита натрия, раствор кипятят 1—2 мин, охлаждают, помещают в мерную колбу вместимостью 25 см³ и доводят до метки соляной кислотой, разбавленной 1:1.

Из раствора удаляют кислород, продувая азот в течение 5—10 мин, и полярографируют в интервале потенциалов от минус 0,08 до минус 0,20 В по отношению к донной ртути.

3.3.3. Определяют коэффициент пересчета К методом добавок. Для этого аликвотную часть стандартного раствора В или Б помещают в стакан с навеской меди и далее поступают, как указано в п. 3.3.2

$$K = \frac{H_{cn} - H_{n}}{C}$$
,

где H_{en} — высота пика, соответствующая сумме высот пиков полярограммы сурьмы в анализируемом растворе пробы и добавки сурьмы в этот раствор, мм;

Н_п — высота пика полярограммы сурьмы, полученная для рас-

твора пробы, мм;

С — массовая концентрация сурьмы, введенной в раствор пробы в виде добавки, мг/дм³.

3.4. Обработка результатов

 3.4.1. Массовую долю сурьмы (X) в процентах вычисляют по формуле

$$X = \frac{H_0 \cdot V}{K \cdot m \cdot 10^4}$$

где V -- вместимость мерной колбы, см3;

К - коэффициент пересчета;

т — масса навески меди, г.

3.4.2. Абсолютные допускаемые расхождения результатов двух параллельных определений при анализе пробы при доверительной вероятности P = 0.95 (d_n — показатель сходимости) и результатов анализа одной и той же пробы, полученных в двух лабораториях, а также в одной лаборатории, но в различных условиях (D— показатель воспроизводимости), не должны превышать значений, приведенных в табл. 2.

Таблица 2

	Абсол отные допускаемые расхождения, % результатов	
Массован доля сурьмы, %	паравлельных опре- делений d _R	анализов D
От 0,00006 до 0,0015 включ.	0,00006	0,00006

 3.4.3. Контроль правильности результатов анализа проводят в соответствии с пп. 2.4.3, 2.4.4.

4. МЕТОДЫ ОПРЕДЕЛЕНИЯ ТЕЛЛУРА

4.1. На фоне йодистого калия

Метод основан на полярографировании раствора, содержащего теллур, на фоне йодистоводородной кислоты в интервале потенциалов от минус 0,38 до минус 0,60 В.

4.1.1. Аппаратура, реактивы, растворы Полярограф типа ППТ-1 или ПУ-1.

Весы лабораторные аналитические любого типа 2-го класса точности.

Стаканы B-1-250 TC по ГОСТ 25336.

Колбы мерные 2—50—2, 2—100—2, 2—500—2 по ГОСТ 1770. Пипетки 2—2—5, 2—2—10, 5—2—2 по ГОСТ 20292.

Кислота азотная по ГОСТ 4461, разбавленная 1:1.

Кислота соляная по ГОСТ 3118.

Кислота серная по ГОСТ 4204, разбавленная 1:3.

Смесь кислот азотной и соляной в соотношении 1:3 (свежеприготовленная).

Калий йодистый по ГОСТ 4232, раствор 2 моль/дм3.

Аммнак водный по ГОСТ 3760, раствор 5:95.

Железо (III) сернокислое 9-водное по ГОСТ 9485. раствор I г/дм³.

Азот газообразный по ГОСТ 9293.

Аргон по ГОСТ 10157.

Теллур высокой чистоты по нормативно-технической документации.

4.1.2. Подготовка к анализу

4.1.2.1. Приготовление стандартных растворов

Раствор А: навеску теллура массой 0,100 г растворяют в 5 см³ азотной кислоты, разбавленной 1:1, выпаривают раствор досуха, не прокаливая. К остатку приливают 20 см3 соляной кислоты, помещают раствор в мерную колбу вместимостью 100 см3 и доводят водой до метки.

1 см3 раствора А содержит 1 мг теллура.

Раствор Б: отбирают 5 см³ раствора А, помещают в мерную колбу вместимостью 500 см3, приливают 5 см3 соляной кислоты и доводят водой до метки.

1 см³ раствора Б содержит 0,01 мг теллура.

Раствор В: отбирают 10 см³ раствора Б, помещают в мерную колбу вместимостью 100 см3 и доводят водой до метки.

1 см³ раствора В содержит 0,001 мг теллура. 4.1.2.2. Приготовление растворов сравнения

Для приготовления растворов сравнения в ряд стаканов вместимостью 50 см3 помещают 0,0; 2,0; 5,0; 10 см3 стандартного раствора В, добавляют по 0,2 см3 серной кислоты и выпаривают до появления густых белых паров серной кислоты. Выпаривание 0,2 см3 серной кислоты проводят три раза. Охлаждают, приливают 6 см³ раствора йодистого калия и 20-30 см³ воды, перемешивают, помещают в мерную колбу вместимостью 50 см3 и доводят водой до метки. Растворы устойчивы в течение 4-6 ч.

4.1.3. Проведение анализа

Навеску меди массой 1,000 г помещают в стакан вместимостью 100 см3, приливают 10-15 см3 азотной кислоты, разбавленной 1:1, и нагревают до растворения навески. Охлаждают, прибавляют

2 см³ раствора сернокислого железа, разбавляют водой до объема 50 см³, нейтрализуют аммиаком до начала выпадения гидроксида железа и еще 5 см³ в избытке. Нагревают раствор в течение 5—7 мин, затем фильтруют через фильтр средней плотности. Промывают фильтр с осадком 3—5 раз аммиаком, разбавленным 5:95, и затем 3—4 раза горячей водой.

Смывают водой осадок с фильтра в стакан, в котором проводили осаждение, приливают 5 см³ соляной кислоты и нагревают до растворения. В растворе вновь осаждают гидроксид железа амми-аком и фильтруют осадок на тот же фильтр. Промывают фильтр 5—6 раз горячей водой. Растворяют осадок на фильтре в 10—15 см³ смеси кислот и промывают фильтр 5—6 раз горячей водой.

Фильтрат упаривают до объема 10—15 см³, добавляют 0,2 см³ серной кислоты и выпаривают до появления густых белых паров. Выпаривание с 0,2 см³ серной кислоты проводят три раза. После охлаждения приливают 6 см³ раствора йодистого калия и 10—20 см³ воды, перемешивают, помещают в мерную колбу вместимостью 50 см³ и доводят водой до метки.

Раствор переносят в электролизер, освобождают от кислорода продуванием азотом или аргоном. Полярографируют в интервале потенциалов от минус 0,38 до минус 0,60 В одновременно с растворами сравнения и раствором контрольного опыта.

4.1.4. Обработка результатов

 4.1.4.1. Массовую долю теллура (X) в процентах вычисляют по формуле

$$X = \frac{H \cdot V}{K \cdot m \cdot 10^4} ,$$

где H — высота пика анализируемого раствора с учетом контрольного опыта, мм;

V — вместимость мерной колбы, см³;

- К среднее значение отношения высот волн, полученных при полярографировании растворов сравнения теллура к концентрациям этих растворов, мм-см³/мг (см. п. 3.3.3.).
- 4.1.4.2. Абсолютные допускаемые расхождения результатов двух параллельных определений при анализе пробы при доверительной вероятности P = 0.95 (d_π показатель сходимости) и результатов анализа одной и той же пробы, полученных в разных лабораториях, а также в одной лаборатории, но в различных условиях (D показатель воспроизводимости), не должны превышать значений, приведенных в табл. 3.
- 4.1.4.3. Контроль правильности результатов анализа проводят в соответствии с пп. 2.4.3, 2.4.4.

	Абсолютные допускаемые расхождения, % результатов	
Массовая доля теллура, %	парадлельных опре- делений d _m	аналиров <i>D</i>
От 0,00003 до 0,00010 включ.	0.00002	0,00003
Св. 0,0001 до 0,0002 >	0,00004	0,00005
Cs. 0,0002 > 0,0005 >	0.0001	0,0002
> 0,0005 > 0,0010 >	0,0002	0,0003
> 0.0010 > 0.0020 >	0.0003	0.0004

4.2. На фоне фосфорной кислоты

Метод основан на полярографировании раствора, содержащего теллур, на фоне фосфорной кислоты в интервале потенциалов от минус 0,6 до минус 1,5 В после предварительного выделения теллура на гидроксиде железа.

4.2.1. Аппаратура, реактивы, растворы

Полярограф типа ППТ-1 или ПУ-1 (переменно-токовый режим).

Стакан Н-1-100 ТС по ГОСТ 25336.

Колбы мерные 1-50-2, 2-100-2, 2-500-2 по ГОСТ 1770.

Пипетки 3-2-5, 3-2-10 по ГОСТ 20292.

Цилиндр 1—10, 3—25 по ГОСТ 1770.

Кислота азотная по ГОСТ 4461, разбавленная 1:1.

Кислота серная по ГОСТ 4204, разбавленная 1:3.

Кислота соляная по ГОСТ 3118 и разбавленная 1:1.

Кислота ортофосфорная по ГОСТ 6552, разбавленная 1:3.

Аммиак водный по ГОСТ 3760 и раствор 5:95.

Железо (III) сернокислое 9-водное по ГОСТ 9485, раствор 1 г/дм³.

Азот по ГОСТ 9293.

Аргон по ГОСТ 10157.

Теллур высокой чистоты по нормативно-технической документации.

4.2.2. Подготовка к анализу

4.2.2.1. Приготовление стандартных растворов

Раствор А: навеску теллура массой 0,100 г растворяют в 5 см³ азотной кислоты, разбавленной 1:1, выпаривают раствор досуха, не прокаливая. К остатку приливают 20 см³ соляной кислоты, помещают раствор в мерную колбу вместимостью 100 см³ и доводят до метки водой.

1 см³ раствора А содержит 1 мг теллура.

Раствор Б: 5 см³ раствора А помещают в мерную колбу вместимостью 500 см³, приливают 5 см³ соляной кислоты, доводят водой до метки.

1 см3 раствора Б содержит 0,01 мг теллура.

Раствор В: 10 см³ раствора Б помещают в мерную колбу вместимостью 100 см³ и доводят водой до метки.

1 см³ раствора В содержит 0,001 мг теллура. 4,2,2,2. Приготовление растворов сравнения

В мерные колбы вместимостью 50 см³ помещают 1,0; 2,5; 5,0; 10,0 стандартного раствора В и 2,5; 5,0; 10,0 см³ стандартного раствора Б, что соответствует 0,0010; 0,0025; 0,0050; 0,0100; 0,0250; 0,0500 и 0,1000 мг теллура. Во все колбы приливают по 25 см³ ортофосфорной кислоты, разбавленной 1:3, и доводят водой по метки.

4.2.3. Проведение анализа

Навеску меди массой 0,50—5,0 г помещают в стакан вместимостью 250 см³, приливают 10—30 см³ азотной кислоты, разбавленной 1:1, и нагревают до растворения. Раствор охлаждают и прибавляют 1—2 см³ раствора сернокислого железа, разбавляют водой до 50 см³, нейтрализуют аммиаком до начала выпадения гидроксида железа и приливают избыток аммиака 5 см³. Нагревают
раствор в течение 5—7 мин, после чего отфильтровывают. Осадок
промывают аммиаком, разбавленным 5:95, затем растворяют на
фильтре в горячей соляной кислоте, разбавленной 1:1, собирая раствор в стакан, в котором проводили осаждение. Повторяют осаждение гидроксида железа аммиаком, фильтруют, промывают горячим аммиаком, разбавленным 5:95.

Осадок на фильтре растворяют в 20 см² серной кислоты, разбавленной 1:3, приливают к раствору мерным цилиндром 10 см³ азотной кислоты и выпаривают досуха. Осадок растворяют при нагревании в 5—25 см³ ортофосфорной кислоты, разбавленной 1:3, переносят раствор в мерную колбу вместимостью 10—50 см³

и доводят водой до метки.

Раствор переносят в электролизер, освобождают от кислорода с помощью азота, аргона или другого инертного газа. После этого полярографируют в интервале потенциалов от минус 0,6 до 1,5 В по отношению к донной ртути ($E_{\text{пака}} = -1,1$ В).

Одновременно проводят полярографирование растворов срав-

нения.

4.2.4. Обработка результатов

 4.2.4.1. Массовую долю теллура (X) в процентах вычисляют по формуле

$$X = \frac{H \cdot V}{K \cdot m \cdot 10^4}$$
,

 где H — высота пика анализируемого раствора за вычетом высоты пика контрольного опыта, мм;

V -- вместимость мерной колбы, см³;

 К — среднее значение отношения высот воли, полученных при полярографировании растворов сравнения теллура, к массовым концентрациям этих растворов, мм-см³/мг. (п. 3.3.3);

т — масса навески меди, г.

4.2.4.2. Абсолютные допускаемые расхождения результатов параллельных определений d_n и результатов анализа одной и той же пробы D приведены в табл. 3.

4.2.4.3. Контроль правильности результатов анализа проводят в

соответствии с пп. 2.4.3, 2.4.4.

информационные данные

 РАЗРАБОТАН И ВНЕСЕН Министерством цветной металлургии СССР

исполнители:

- Б. М. Рогов, Э. Н. Гадзалов, И. И. Лебедь, В. П. Красноносов, Л. Н. Васильева, Н. И. Молоствова, В. И. Зюзин, З. П. Дутова, А. К. Опескина
- УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 22.12.88 № 4443
- Срок первой проверки 1994 г. Периодичность проверки — 5 лет
- 4. ВВЕДЕН ВПЕРВЫЕ
- ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕН-ТЫ:

Сбозначение НТД, на который дана ссылка	Номер пункта	Обозначение НТД, на который дама ссылия	Номер пунктя
ГОСТ 200—76 ГОСТ 1089—82	3.1 3.1	ГОСТ 5841—74 ГОСТ 6552—80	3.1 4.2.1
ΓΟCT 146777	2.1	ГОСТ 914780	3.1
ΓΟCT 162575	2.1	FOCT 9293-74	2.1, 3.1, 4.1.1, 4.2.1
ΓΟCT 177074	2.1, 3.1, 4.1.1, 4.2.1	ΓΟCT 9485-74 ΓΟCT 10157-79	4.1.1, 4.2.1
FOCT 3118-77	2.1, 3.1, 4.1 1, 4.2.1	ΓΟCT 20292-74 ΓΟCT 22159-76	2.1, 3.1, 4.1.1, 4.2.1
ΓΟCT 376079	3.1, 4.1.1, 4.2.1	FOCT 25336-82	2.1, 3.1, 4.1.1,
FOCT 3773-72	2.1, 3.1	1	4.2.1
ΓΟCT 420477	3.1, 4.1.1, 42.1	FOCT 27981.0-88	Разд. 1
ΓΟCT 4232-74	4.1.1	1	
ГОСТ 4461-77	2.1, 3.1, 41.1,	1	
	1421	17	1