

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ФЕРРОМОЛИБДЕН

метод определения молибдена

ГОСТ 13151.1—89 (СТ СЭВ 1229—88)

Издание официальное

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ФЕРРОМОЛИБДЕН

Метод определения молибдена

ГОСТ 13151.1—89

Ferromolybdenum, Method for the determination of molybdenum

(CT C3B 1229-88)

CKCTY 0809

Срок действия с 01.01.1990

до 01.01.2000

Несоблюдение стандарта преследуется по закону

Настоящий стандарт устанавливает гравиметрический метод определения молибдена в ферромолибдене (при массовой доле молибдена от 45 до 80%).

Метод основан на осаждении молибдена в уксуснокислом растворе в виде молибденовокислого свинца после предварительного отделения железа и других мешающих компонентов гидроокисью натрия.

В осадке молибденовокислого свинца устанавливают массовую долю соосажденного вольфрамовокислого свинца и вносят соответствующую поправку.

1. ОБЩИЕ ТРЕБОВАНИЯ

Общие требования к методу анализа — по ГОСТ 27349.

 Лабораторная проба должна быть приготовлена в виде тонкого порошка с размером частиц 0,16 мм по ГОСТ 26201.

2. АППАРАТУРА, РЕАКТИВЫ И РАСТВОРЫ

Спектрофотометр или фотоэлектроколориметр.

Кислота азотная по ГОСТ 4461 и разбавленная 1:1 и 1:20.

Кислота соляная по ГОСТ 3118 и разбавленная 1:1 и 2:1.

Кислота серная по ГОСТ 4204 и разбавленная 1:1.

Кислота винная по ГОСТ 5817.

Кислота уксусная по ГОСТ 61 и разбавленная 5:95.

Издание официальное

Перепечатка воспрещена

© Издательство стандартов, 1989

Натрия гидроокись по ГОСТ 4328 и растворы с массовой концентрацией 200 и 5 г/дм3.

Натрий углекислый по ГОСТ 83.

Натрия пероксид.

Натрий сернистый (сульфид натрия) по ГОСТ 2053, раствор

с массовой концентрацией 300 г/дм3.

Натрий молибденовокислый по ГОСТ 10931 и раствор с массовой концентрацией молибдена 0,005 г/см3: 12,6 г молибденовокислого натрия растворяют в 500 см³ раствора гидроокиси натрия с массовой концентрацией 5 г/дм3.

Раствор переносят в мерную колбу вместимостью 1 дм³, раз-

бавляют водой до метки и перемешивают.

Аммоний роданистый по ГОСТ 19522, раствор с массовой концентрацией 250 г/дм3.

Аммоний уксусновислый по ГОСТ 3117, растворы с массовой концентрацией 500 и 30 г/дм³.

Серебро азотнокислое по ГОСТ 1277, раствор с массовой кон-

центрацией 2,5 г/дм³.

Свинец уксуснокислый (трехводный) по ГОСТ 1027, раствор с массовой концентрацией 40 г/дм³: 40 г уксуснокислого свинца растворяют в воде в присутствии 10 см³ уксусной кислоты и разбавляют водой до 1 дм3.

Метиловый оранжевый, раствор с массовой концентрацией

10 г/дм³.

Титан треххлористый по ГОСТ 311 и раствор: 10 см³ раствора треххлористого титана разбавляют до 100 см³ соляной кислотой

(1:1) и перемещивают.

Олово (II) хлорид 2-водный по ТУ 6-09-53-84-88, раствор с массовой концентрацией 100 г/дм3: 10 г хлористого олова растворяют в 100 cm3 соляной кислоты при слабом нагревании.

Калий роданистый по ГОСТ 4139, раствор с массовой концен-

трацией 200 г/дм³.

Хлороформ по ГОСТ 20015.

Триметилцетиламмоний бромистый, раствор с молярной концентрацией 0,01 моль/дм3: 0,365 г триметилцетиламмония растворяют в 100 см³ воды при слабом нагревании или

N-цетилпиридиний хлористый, раствор с молярной концентрацией 0.01 моль/дм3: 0.358 г цетилпиридиния растворяют в 100 см3

воды без нагревания.

Гидрохинов (парадиоксибензол) по ГОСТ 19627, раствор с массовой концентрацией 0,65 г/дм3 в хлороформе: 0,65 г гидрохинона растворяют при перемешивании в 80 см3 этилового спирта, прибавляют 920 см³ хлороформа и перемешивают.

Спирт этиловый ректификованный по ТОСТ 5962.

Натрий вольфрамовокислый по ГОСТ 18289.

: Стандартные растворы вольфрама.

Раствор А: 1,7942 г вольфрамовокислого натрия растворяют в 100 см³ раствора гидроокиси натрия с массовой концентрацией 5 г/дм³. Полученный раствор переливают в мерную колбу вмести-мостью 1 дм³, разбавляют водой до метки и перемешивают; раствор хранят в сосуде из полиэтилена.

Массовая концентрация вольфрама в растворе А равна

0.001 г/см3.

Раствор Б: 20,0 см³ стандартного раствора А переносят в мер-ную колбу вместимостью 100 см³, разбавляют водой до метки и перемешивают; раствор готовят перед применением.

Массовая концентрация вольфрама в растворе Б равна

0.0002 г/см³.

Раствор В: 10,0 см3 стандартного раствора А переносят в мерную колбу вместимостью 100 см3, разбавляют водой до метки и перемешивают; раствор готовят перед применением.
Массовая концентрация вольфрама в растворе В равна

0.0001 r/cm3.

3. ПРОВЕДЕНИЕ АНАЛИЗА

 Навеску ферромолиблена массой 0,5 г помещают в коническую колбу вместимостью 250 см³, прибавляют 20 см³ азотной кислоты (1:1), покрывают часовым стеклом и нагревают до прекращения выделения окислов азота. К раствору прибавляют 10 см3 соляной кислоты и продолжают нагревать до полного рас-

творения навески.

Если навеска ферромолибдена полностью не растворяется в кислотах, то добавляют 50 см³ горячей воды и нерастворимый осадок отфильтровывают на фильтр средней плотности с добавлением небольшого количества фильтробумажной массы. Стакан и осадок на фильтре промывают 8—10 раз горячим раствором азотной кислоты (1:20). Фильтрат сохраняют (фильтрат А). Фильтр с осадком помещают в платиновый тигель высущивают и озоляют. Осадок прокаливают при температуре (450 ± 25)°С, тигель охлаждают и осадок сплавляют с 1-2 г углекислого натрия при температуре (920±25)°С в течение 10-15 мин.

После охлаждения тигель с плавом помещают в стакан вместимостью 200 см², прибавляют 20-30 см² раствора азотной кислоты (1:20) и выщелачивают плав при нагревании. После растворения плава тигель из стакана удаляют, обмывают его стенки горячей водой и раствор присоединяют к фильтрату А. Содержимое колбы охлаждают, нейтрализуют в присутствии раствора метилового оранжевого раствором гидроокиси натрия с массовой концентрацией 200 г/дм³ и вливают в коническую колбу вместимостью 500 см³, содержащую 50 см³ горячего раствора гидроокиси натрия с массовой концентрацией 200 г/дм³. Затем раствор нагревают до кипения, кипятят в течение 2—3 мин, охлаждают до комнатной температуры, переносят в мерную колбу вместимостью 250 см³, разбавляют водой до метки и перемещивают. Раствор фильтруют через сухой фильтр в сухую колбу, отбрасывая первые порции фильтрата. От полученного раствора отбирают аликвотиую часть 100,0 см³, помещают в коническую колбу или стакан вместимостью 500 см³, нейтрализуют в присутствии индикатора метилового оранжевого раствором соляной кислоты (2:1) до перехода окраски раствора в слабо-розовый цвет. Затем прибавляют 50 см³ раствора уксуснокислого аммония с массовой концентрацией 500 г/дм³, 40 см³ уксусной кислоты и раствор нагревают до кипения. К кипящему раствору медленно, при перемешивании, из бюретки приливают по каплям 16,0 см³ раствора уксуснокислого свинца до коагуляции образующегося осадка.

Затем в испытуемый раствор прибавляют 2—3 см³ набытка раствора уксуснокислого свинца и раствор с осадком кипятят в течение 10—20 мин, пока не осядет кристаллический осадок молибдата свинца, которому дают стоять при температуре (50±5)°С в течение 1 ч.

Осадок отфильтровывают на двойной плотный фильтр и промывают колбу или стакан и фильтр с осадком 4—5 раз горячим раствором уксуснокислого аммония с массовой коицентрацией 30 г/дм³. Осадок молибдата свинца смывают горячей водой обратно в колбу (стакан), в которой проводилось осаждение. Фильтр промывают 30—40 см³ горячего раствора соляной кислоты (1:1) и 8—10 раз горячей водой, собирая промывную жидкость в колбу, в которой находится основной раствор. Раствор нагревают до растворения осадка. Фильтр помещают в фарфоровый тигель, высушивают, озоляют и прокаливают при 600°С. Остаток в тигле растворяют при нагревании в 5 см³ соляной кислоты (1:1) и присоединяют к основному раствору.

К раствору объемом около 150 см³ добавляют 1—2 капли раствора метилового оранжевого и нейтрализуют раствором уксуснокислого аммония с массовой концентрацией 500 г/дм³ до изменения окраски индикатора. Далее приливают 10 см³ раствора уксуснокислого аммония, 5 см³ уксусной кислоты, нагревают до кипения, приливают 1—2 см³ раствора уксуснокислого свинца кипятят в течение 15—20 мин и оставляют стоять при температуре (50 ± ±5)°С в течение № ч.

Раствор фильтруют через двойной плотный фильтр. Осадок молибденовокислого свинца на фильтре промывают теплым раствором уксуснокислого аммония с массовой концентрацией 30 г/дм³ до исчезновения в промывной жидкости ионов хлора (качественная реакция с раствором азотнокислого серебра). Фильтр с осадком помещают во взвешенный тигель, высушивают и озоляют. Осадок прокаливают при 600°C в течение 1 ч. Тигель охлаждают: и взвешивают (m₁).

- 3.2. Определение вольфрама в осадке молибденовокислого свинца фотометрическим методом
- 3.2.1. Осадок молибденовокислого свинца помещают в железный или никелевый тигель, содержащий 4 г пероксида натрия, перемешивают стеклянной палочкой и прибавляют 2 г пероксида натрия. Тигель нагревают на плите до отставания содержимого от его стенок, затем помещают в муфельную печь нагретую до (700±50)°С и сплавляют при этой температуре в течение 4—6 мин.

Затем тигель охлаждают, помещают в стакан вместимостью 300—400 см³, прибавляют 100—150 см³ холодной воды. Выщелачивают плав и кипятят до полного разрушения пероксида натрия. Затем тигель извлекают из стакана и обмывают водой.

Охлажденный раствор с осадком переносят в мерную колбу вместимостью 250 см³, разбавляют водой до метки и перемешивают. Осадку дают отстояться, после чего раствор фильтруют через сухой фильтр в сухой стакан, отбрасывая первые порции фильтрата. От полученного раствора отбирают аликвотную часть 100,0 см³. Помещают ее в коническую колбу вместимостью 250 см³, прибавляют 2 г винной кислоты, 15 см³ раствора серной кислоты (1:1). Нагревают раствор до кипения и осаждают молибден в виде сульфида, прибавляя 40 см³ раствора сернистого натрия небольщими порциями при перемешивании. Раствор нагревают до кипения и кипятят в течение 20 мин.

3.2.2. Осадок сульфида молибдена отфильтровывают на вату с добавлением небольшого количества фильтробумажной массы и собирают фильтрат в коническую колбу вместимостью 500 см³.

Осадок промывают 3—4 раза холодной водой и отбрасывают. Фильтрат проверяют на полноту осаждения молибдена. Для этого к полученному фильтрату прибавляют 1 г винной кислоты, нагревают раствор до кипения, прибавляют 15 см³ раствора серинстого натрия и кипятят в течение 10—15 ман. Раствор с осадком охлаждают, переносят в мерную колбу вместимостью 250 см³, разбавляют водой до метки и перемешивайт.

3.2.3. Раствор фильтруют через сухой фильтр в сухой стакан, отбрасывая первые порции фильтрата. Аликвотную часть раствора 20,0 см³ (содержание вольфрама не должно превышать 0,5 мг) помещают в мерную колбу вместимостью 50 см³, прибавляют 2,5 см³ раствора роданистого аммония, перемешивают, прибавляют 25 см³ раствора соляной кислоты (2:1) и вновь перемешивают. Затем прибавляют по каплям раствор треххлористого титана до появления желтовато-зеленой окраски и после этого добавляют еще 1—2 капли раствора треххлористого титана. Раст-

вор в мерной колбе разбавляют раствором соляной кислоты (2:1) до метки и перемешивают.

Через 10 мин измеряют оптическую плотность раствора на спектрофотометре при длине волны 400 нм или фотоэлектроколо-риметре в области светопропускания 410—450 нм. В качестве раствора сравнения применяют раствор контрольного опыта (без добавления роданистого аммония), который готовят следующим образом: прокаленный и взвешенный осадок контрольного опыта, полученный по п. 3.1, переносят в железный или никелевый тигли, прибавляют 0,3 г молибденовокислого натрия, 6 г пероксида натрия, перемешивают, сплавляют при температуре (700±50)°С и далее анализ проводят как указано в пп. 3.2.1, 3.2.2, 3.2.3.

3.2.4. Массу вольфрама (т4) находят по градунровочному

графику.

3.2.4.1. Построение градуировочного графика при массе вольф-

рама от 0,0002 до 0,0010 г.

В пять из шести конических колб вместимостью по 250 см³ по-мещают по 80 см³ воды, по 25 см³ раствора молибденовокислого натрия и 2.0; 4.0; 6.0; 8.0; 10.0 см³ стандартного раствора В вольфрама, что соответствует 0,0002; 0,0004; 0,0005; 0,0008; 0,0010 г вольфрама. В шестую колбу приливают все реактивы, за исключением стандартного раствора вольфрама. Раствор этой колбы служит для контрольного опыта на загрязнение реактивов колом служит для контрольного опыта на загрязнение реактивов и в качестве раствора сравнения. В колбы прибавляют по 2 г винной кислоты, по 25 см³ раствора серной кислоты (1:1), по 60 см³ воды, нагревают до кипения и осаждают сульфид молибде-на 40 см³ раствора сернистого натрия, прибавляя его небольшими порциями при перемешивании. Раствор нагревают до кипения и кипятят в течение 20 мин. Далее анализ проводят, как указано в пп. 3.2.2, 3.2.3.

По полученным значениям оптической плотности растворов и соответствующим им массам вольфрама строят градуировочный график.

3.2.4.2. Построение градуировочного графика при массе вольфрама свыше 0,0010 до 0,0020 г.

В шесть из семи конических колб вместимостью по 250 см3 в местимостью по 250 см³ воды, по 25 см³ раствора молибденовокислого натрия и 10,0; 12,0; 14,0; 16.0; 18,0; 20,0 см³ стандартного раствора В, что соответствует 0,0010; 0,0012; 0,0014; 0,0016; 0,0018; 0,0020 г вольфрама. В седьмую колбу приливают все реактивы, за исключением стандартного раствора вольфрама. Раствор этой колбы служит для проведения контрольного опыта на загрязне-

ние реактивов и в качестве раствора сравнения.

В колбы прибавляют по 2 г винной кислоты, по 25 см³ раствора серной кислоты (1:1), по 60 см³ воды, нагревают до кипения и осаждают сульфид молибдена 40 см³ раствора сернистого нат-

рия, прибавляя его небольшими порциями при перемешивании. Раствор нагревают до кипения и кипятят в течение 20 мин.

Далее анализ проводят, как указано в пп. 3.2.2, 3.2.3.

По полученным значениям оптической плотности растворов и соответствующим им массам вольфрама строят градуировочный график.

- 3.3. Определение вольфрама в осадке молибденовокислого свинца экстракционно-фотометрическим методом
- 3.3.1. Осадок молибденовокислого свинца помещают в стакан вместимостью 100 см³ и растворяют в 30 см³ раствора соляной кислоты (1:11). Раствор охлаждают, переносят в мерную колбу вместимостью 100 см³, разбавляют до метки водой и перемешивают.
- 3.3.2. Аликвотную часть раствора, равную 10,0 см³ при массе вольфрама до 0,0010 г или 5,0 см³ при массе вольфрама свыше 0,0010 г, помещают в стакан вместимостью 100 см³, прибавляют 20 см³ соляной кислоты, 15 см³ раствора хлористого олова и 1,0 см³ треххлористого титана. Раствор кипятят в течение 5 мин, охлаждают и переносят в делительную воронку вместимостью 100—200 см³, смывая стенки стакана 10 см³ раствора соляной кислоты (1:1). К раствору в делительной воронке прибавляют 1,0 см³ раствора триметилцетиламмония бромистого (или цетилпиридиния хлористого) и 2,0 см³ раствора роданистого калия. Экстрагируют ионный ассоциат в течение 11 мин, прибавляя 25,0 см³ хлороформа, содержащего гидрохинон. Экстракт фильтруют через слой ваты в кювету и измеряют оптическую плотность экстракта на спектрофотометре при длине волны 400 им или фото-электроколориметре в области светопропускания от 350 до 450 им, используя в качестве раствора сравнения хлороформ, содержащий гидрохинон.

Массу вольфрама (m₅) находят по градуировочному графику после вычитания значения оптической плотности контрольного опыта из значения оптической плотности анализируемого раствора.

3.3.3. Построение градуировочного графика

В пять из шести конических колб вместимостью 100 см³ помещают по 1,0; 2.0; 3,0; 4,0 и 5,0 см³ стандартного раствора Б, что соответствует 0,0002; 0,0004; 0,0006; 0,0008 и 0,0010 г вольфрама. Во все шесть колб приливают по 30 см³ раствора соляной кислоты (1:1), растворы переносят в мерные колбы вместимостью 100 см³, разбавляют до метки водой, перемешивают и отбирают аликвотные части растворов, равные 10,0 см³, помещают в стаканы вместимостью 100 см³, прибавляют 20 см³ соляной кислоты,

15 см³ раствора хлористого олова, 1,0 см³ треххлористого титана и далее поступают, как указано в п. 3,3,2.

Раствором сравнения служит хлороформ, содержащий гидрохинон. Градуировочный график строят по найденным значениям оптических плотностей и соответствующим им массам вольфрама, с учетом оптической плотности экстракта, не содержащего стандартного раствора вольфрама.

4. ОБРАБОГКА РЕЗУЛЬТАТОВ

 4.1. Массовую долю молибдена (X) в процентах вычисляют по формуле

$$X = \frac{(m_1 - m_2 - m_3) \cdot 0.2614 \cdot 100}{m}$$

- где m₁ масса осадка молибденовокислого свинца, загрязненного вольфрамовокислым свинцом, г;
 - m_2 масса вольфрамовокислого свинца в осадке молибденовокислого свинца, г, вычисленная по формуле $m_2 = m_4 \cdot 2,4748 \cdot 2,5$ или $m_2 = m_5 \cdot 2,4748$,
- где та масса вольфрама, найденная в части осадка молибленовокислого свинца фотометрическим методом, г;
- 2,4748 коэффициент пересчета вольфрама на вольфрамовокислый свинец;
 - 2.5 коэффициент разбавления;
 - ть масса вольфрама, найденная в осадке молибденовокислого свинца экстракционно-фотометрическим методом, г;
 - та масса осадка контрольного опыта, г;
 - т масса навески, соответствующая аликвотной части раствора. г;
- 0,2614 коэффициент пересчета молибденовокислого свинца на молибден.
- 4.2. Нормы точности и нормативы контроля точности определения массовой доли молибдена приведены в таблице.

Массовая доля молибдена, %	Попрешнюсть результатов анализа (Δ),	Допускаемые расхождения, %			
		результатов двух анали- зов d _K	двух парел- лельных оп- ределений d ₂	трех нарял- лельных оп- ределений d ₂	результатов анализа став- дартного об- разца от ат- тестованного значения 6
От 45 до 80	0.4	0,5	0,4	0,5	0,3

информационные данные

 РАЗРАБОТАН И ВНЕСЕН Министерством черной металлургии СССР

исполнители

- В. Г. Мизин, Т. А. Перфильева, С. И. Ахманаев, Г. И. Гусева
- УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 07.04.89 № 968
- 3. Периодичность проверки 5 лет
- 4. Стандарт полностью соответствует СТ СЭВ 1229-88
- B3AMEH ΓΟCT 13151.1—80
- 6. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обселечение НТД, на которий дана ссылка	Номер раздела, пункта		
FOCT 61-75	Разд. 2		
FOCT 83-79	Разд. 2		
FOCT 311-78	Разд. 2		
FOCT 102767	Разд. 2		
TOCT 1277—75	Разд. 2		
TCCT 205377	Разд. 2		
FOCT 3117—78	Разд. 2		
FOCT 311877	Разд. 2		
FOCT 4139—77	Разд. 2		
FOCT 4204—77	Разд. 2		
ΓΟCΓ 4328—77	Разд. 2		
FOCT 4461—77	Разд. 2		
FOCT 5817—77	Разд. 2		
FOCT 5962—67	Разд. 2		
ΓΟCΓ 10931—74	Разд. 2		
FOCT 18289—78	Разд. 2		
FOCT 19522—74	Разд. 2		
FOCT 19627—74	Разд. 2		
FOCT 20015—74	Разд. 2		
FOCT 26201—84	1,2		
FOCT 2734987	1.1		
TY 6-09-53-84-88	Разд. 2		

Редактор И. В. Виноградская Технический редактор О. Н. Никитина Корректор Е. И. Евтегва

Спаво в наб. 19.04.89 Поди. в нач 05.06.89 0,75 усл. п. л. 9,75 усл. кр.-оэт. 0,63 уч.-къл. л. Тер. 10.000

Ордена «Знак Почета» Издатальство стандартов, 123840, Москва, ГСП Новопреснейский пер. 3 Тип., «Москойский печатик», Москва, Лялия пер., 6. Зак., 486