СПЛАВЫ МЕДНО-ФОСФОРИСТЫЕ

Метод определения сурьмы

Издание официальное

Предисловие

 РАЗРАБОТАН Межгосударственным техническим комитетом по стандартизации МТК 107, Донецким государственным институтом цветных металлов (ДонИЦМ)

ВНЕСЕН Государственным комитетом Украины по стандартизации, метрологии и сертификации

2 ПРИНЯТ Межгосударственным Советом по стандартизации, метрологии и сертификации (протокол № 10 от 3 октября 1996 г.)

За принятие проголосовали:

Наименование государства	Наименование национального органа по стандартизации
Азербайджанская Республика	Азгосстандарт
Республика Беларусь	Госстандарт Республики Беларусь
Республика Казахстан	Госстандарт Республики Казахстан
Республика Молдова	Молдовастандарт
Российская Федерация	Госстандарт России
Республика Таджикистан	Таджикгосстандарт
Туркменистан	Главгосинспекция «Туркменстандартлары»
Республика Узбекистан	Узгосстандарт
Украина	Госстандарт Украины

³ Постановлением Государственного комитета Российской Федерации по стандартизации и метрологии от 19 декабря 2000 г. № 384-ст межгосударственный стандарт ГОСТ 6674.3—96 введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 1 июля 2001 г.

4 B3AMEH FOCT 6674.3-74

© ИПК Издательство стандартов, 2001

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания на территории Российской Федерации без разрешения Госстандарта России

Содержание

1	Область применения
2	Нормативные ссылки
3	Общие требования
4	Сущность метода
5	Аппаратура, реактивы и растворы
6	Проведение анализа
7	Обработка результатов

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

СПЛАВЫ МЕДНО-ФОСФОРИСТЫЕ

Метод определения сурьмы

Copper-phosphorous alloys. Method for determination of antimony

Дата введения 2001-07-01

1 Область применения

Настоящий стандарт устанавливает фотометрический метод определения сурьмы при ее содержании от 0,001 % до 0,2 % в медно-фосфористых сплавах.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 1089-82 Сурьма. Технические условия

ГОСТ 3118-77 Кислота соляная. Технические условия

ГОСТ 4197-74 Натрий азотистокислый. Технические условия

ГОСТ 4204-77 Кислота серная. Технические условия

ГОСТ 4461-77 Кислота азотная. Технические условия

ГОСТ 5789-78 Толуол. Технические условия

ГОСТ 6674.0-96 Сплавы медно-фосфористые. Общие требования к методам анализа

ГОСТ 6691-77 Карбамид. Технические условия

3 Общие требования

Общие требования — по ГОСТ 6674.0.

4 Сущность метода

Метод основан на экстракции ионов сурьмы (V) толуолом в виде гексахлорстибата кристаллического фиолетового и измерении оптической плотности экстракта при длине волны 590 им.

5 Аппаратура, реактивы и растворы

Фотоэлектроколориметр.

Кислота азотная по ГОСТ 4461 и разбавленная 1:1.

Кислота соляная по ГОСТ 3118 и разбавленная 7:3, 1:1.

Кислота серная по ГОСТ 4204 и разбавленная 1:1.

Олово двухлористое (олово (II) хлорид) по действующему нормативному документу, раствор 100 г/дм³ в соляной кислоте, разбавленной 1:1.

ГОСТ 6674.3-96

Натрий азотистокислый (натрия нитрит) по ГОСТ 4197, раствор 100 г/дм3.

Карбамид (мочевина) по ГОСТ 6691, насыщенный раствор: 100 г мочевины растворяют в 100 см³ горячей воды.

Кристаллический фиолетовый по действующему нормативному документу, раствор 2 г/дм3.

Толуол по ГОСТ 5789.

Сурьма по ГОСТ 1089 марки Су00.

Стандартные растворы сурьмы.

Раствор А: 0,1 г сурьмы растворяют при нагревании в 50 см³ серной кислоты. Раствор переносят в мерную колбу вместимостью 1 дм³, доливают 175 см³ серной кислоты (1:1), охлаждают, доливают водой до метки и перемешивают.

1 см3 раствора A содержит 0,0001 г сурьмы,

Раствор Б: 5 см³ раствора А помещают в мерную колбу вместимостью 100 см³, приливают 70 см³ соляной кислоты, разбавляют до метки водой и перемешивают.

1 см3 раствора Б содержит 0,000005 г сурьмы.

6 Проведение анализа

6.1 Навеску сплава массой 0,5 г помещают в стакан вместимостью 100 см³, добавляют 10 см³ раствора азотной кислоты и растворяют при нагревании, накрыв стакан часовым стеклом.

Стенки стакана и часовое стекло ополаскивают небольшим количеством воды, добавляют 6 см³ серной кислоты и упаривают до выделения густых белых паров серной кислоты. После охлаждения стенки стакана ополаскивают водой и упаривают раствор досуха. После охлаждения добавляют 7 см³ раствора соляной кислоты (7:3) и осторожно нагревают до растворения солей.

- 6.2 При массовой доле сурьмы до 0,005 % раствор переносят в делительную воронку вместимостью 150 см³, обмывают стакан 3 см³ раствора соляной кислоты (7:3) и доводят им объем раствора до 10 см³.
- 6.3 При массовой доле сурьмы свыше 0,005 % раствор переносят в мерную колбу вместимостью 50 см³, обмывают стенки стакана раствором соляной кислоты (7:3) и доводят до метки этим же раствором кислоты. Аликвотную часть раствора согласно таблице 1 переносят в делительную воронку вместимостью 150 см³, добавляют раствор соляной кислоты (7:3) в соответствии с таблицей 1.

Таблица 1

Млесовая доля сурьмы, %	Аликвотная часть раствора, см ³	Объем соляной кислоты, см3	Навеска пробы, соответствующая аликвотной части раствора, г
Св. 0,005 до 0,025 включ.	10	0	0,1
» 0,025 » 0,05 »	5	5	0,05
» 0,05	1	9	0,01

- 6.4 Добавляют в делительную воронку 1—2 капли раствора хлорида олова (II), перемешивают и оставляют на 1 мин. Затем добавляют 1 см³ раствора нитрита натрия, воронку закрывают пробкой и встряхивают 2 мин. После этого пробку воронки открывают. Через 2 мин добавляют 1 см³ раствора мочевины и перемешивают 30 с. Затем добавляют 68 см³ воды, 10 капель раствора кристаллического фиолетового, перемешивают, добавляют 25 см³ толуола и экстрагируют в течение 1 мин. После разделения фаз нижний слой отбрасывают, а органический слой фильтруют через фильтр в кювету.
- 6.5 Для построения градуировочного графика в пять делительных воронок вместимостью 150 см³ вводят соответственно 1,0; 2,0; 3,0; 4,0 и 5,0 см³ стандартного раствора Б и доливают раствором соляной кислоты (7:3) до объема 10 см³. Прибавляют 1—2 капли раствора хлорида олова (II), перемещивают и оставляют на 1 мин. Далее поступают, как указано в 6.4.
- 6.6 Измеряют оптическую плотность экстрактов растворов пробы и растворов для построения градуировочного графика на фотоэлектроколориметре при длине волны 590 нм.

Раствором сравнения служит вода.

7 Обработка результатов

7.1 Массовую долю сурьмы Х, %, вычисляют по формуле

$$X = \frac{m_1}{m} 100,$$
 (1)

где m_1 — масса сурьмы, найденная по градуировочному графику, г; m — масса навески сплава, г.

7.2 Расхождения результатов параллельных определений и результатов анализа не должны превышать допускаемых (при доверительной вероятности 0,95) значений, приведенных в таблице 2.

Таблица 2 В процентах

			Абсолютное допускаемое расхождение			
Массовая доля сурьмы			доля суг	овин	результатов парадлельных определений	результатов анализа
От	0,0010	до	0,005	включ.	0,0005	0,0010
CB.	0.005	*	0.010	*	0,0010	0,0020
	0.010		0,025		0,0020	0,005
-	0,025	*	0.05	>	0,004	0,010
2	0,05		0.10	D.	0,010	0,020
	0.10		0,20		0,020	0,05

УДК 669.35'779:546.86.06:006.354

MKC 77.120.30

B59

ОКСТУ 1709

Ключевые слова: сплавы медно-фосфористые, сурьма, фотометрический метод, экстракция, толуол

Редактор Л.И. Нохимова
Технический редактор Н.С.Гришанова
Корректор Т.И. Кононенко
Компью герная верстка О.В. Арсеевой

Изд.лиц.№ 02354 от 14.07,2000, Сдано в набор 26.03,2001. Подписано в печать 10.04,2001. Усл. печ. л. 0,93. Уч.-изд.л. 0,43. Твраж 5к3. С 714. Зак. 390.