ГОСУДАРСТВЕННЫЯ СТАНДАРТ СОЮЗА ССР

ФЕРРОТИТАН

FOCT

Методы определения меди

14250.5-90

Ferrotitanium Methods for determination of copper

(CT C3B 1238-89)

OKCTY 0809

Срок действия

c 01.07.91

до 01.07.96

Настоящий стандарт устанавливает фотометрический и атомносорбционный методы определения меди в ферротитане при масвой доле ее от 0,03 до 3,5%.

1. ОБЩИЕ ТРЕБОВАНИЯ

Общие требования к методу анализа — по ГОСТ 28473.

 Лабораторная проба должна быть приготовлена в виде порошка с размером частиц 0,16 мм по ГОСТ 26201.

2. ФОТОМЕТРИЧЕСКИЙ МЕТОД

2.1. Сущность метода

Метод основан на образовании в аммиачном растворе окрашенного в желто-коричневый цвет комплексного соединения меди с диэтилдитиокарбаматом натрия и измерении оптической плотности раствора.

Мешающие определению элементы маскируют лимонной кис-

дотой.

2.2. Аппаратура, реактивы и растворы

Спектрофотометр или фотоэлектроколориметр со всеми принадлежностями.

Кислота фтористоводородная по ГОСТ 10484.

Кислота серная по ГОСТ 4204, растворы 1:1 и 1:4.

Кислота азотная по ГОСТ 4461 и раствор 1:1.

Аммиак водный по ГОСТ 3760.

эонаканиифо эннадаН

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен без разрешения Госстандарта СССР Желатии по ГОСТ 11293, свеженриготовленный раствор 5 г/дм³: 0,5 г желатина помещают в стакан вместимостью 300 см³, прибавляют 40—50 см³ воды и оставляют на 1 ч при комнатной температуре, периодически перемешивая. Затем раствор слабо нагревают и при перемешивании растворяют желатин, охлаждают, доливают водой до объема 100 см³ и вновь перемешивают.

Кислота лимонная по ГОСТ 3652, раствор 200 г/дм3.

Натрия N, N-диэтилдитнокарбамат 3-водный по ГОСТ 8864, свежеприготовленный раствор 5 г/дм³.

Медь металлическая.

Стандартные растворы меди

Раствор А: 1,0000 г меди растворяют при нагревании в 40 см³ раствора азотной кислоты. После полного растворения навески добавляют 30 см³ раствора серной кислоты (1:1) и выпаривают до выделения паров серной кислоты. После охлаждения соли растворяют в 200 см³ воды, раствор переносят в мерную колбу вместамостью 1 дм³, охлаждают, доливают до метки водой и перемещивают.

Массовзя концентрация меди в растворе A равна 0,001 г/см³. С Раствор Б: 10,0 см³ раствора A помещают в мерную колбу вместимостью 1 дм³, доливают до метки водой и перемешивают.

Массовая концентрация меди в растворе Б равна 0,00001 г/см3.

2.3. Проведение анализа

2.3.1. При массовой доле кремния до 5% навеску пробы, отобранную согласно табл. 1, помещают в коническую колбу вместимостью 250 см³, приливают 50 см³ раствора серной кислоты 1:4 и растворяют при слабом нагревании. Затем по каплям добавляют 5 см³ азотной кислоты. Раствор выпаривают до выделения паров серной кислоты, охлаждают, соли растворяют в 30 см³ воды при нагревании.

Таблица 1

Массовия доля медя, %	Масса на- вески пробы, г	Объем влик- вотной час- ти растворя пробы, см ⁴	Масса меди в аликвотной части раствора чробы, г	Объем ставлартного раствора В, см ³
От 0,03 до 0,3 включ.	0.5	25	0.015—0.15	1-16
Св. 0,3 » 1,5 »	0.25	10	0.03—0.15	2-16
» 1,5 » 3,5 »	0.1	10	0.06—0.14	5-15

2.3.2. При массовой доле кремния свыше 5% навеску пробы, отобранную согласно табл. 1, помещают во фторопластовый стакан вместимостью 100 см³ или чашку из платины или стеклоуглерода, приливают 50 см³ раствора серной кислоты (1:4), 5 см³ фтористоводородной кислоты, перемешивают и добавляют по каплям 5 см³

азотной кислоты. Раствор выпаривают до выделения паров серной кислоты, охлаждают, соли растворяют в 30 см³ воды при нагревании.

2.3.3. Охлажденный раствор, приготовленный по п. 2.3.1 или 2.3.2 переносят в мерную колбу вместимостью 250 см³ доливают

водой до метки и перемешивают.

Две аликвотные части раствора, согласно табл. 1, отбирают в мерные колбы вместимостью 100 см³, приливают в каждую по 15 см³ раствора лимонной кислоты, 10 см³ раствора желатина, 15 см³ аммиака, перемешивают и охлаждают. Затем в одну из колб добавляют 10 см³ раствора диэтилдитиокарбамата натрия. Растворы доливают водой до метки и перемешивают.

Оптическую плотность раствора измеряют на спектрофотометре при длине волны 453 им или на фотоэлектроколориметре в обла-

сти светопропускания от 400 до 480 нм.

В качестве раствора сравнения используют раствор, не содер-

жащий раствора диэтилдитиокарбамата натрия.

Массу меди находят по градуировочному графику после вычитания значения оптической плотности раствора контрольного опыта из значения оптической плотности раствора пробы,

2.3.4. Для построения градуировочного графика в ряд мерных колб вместимостью 100 см⁵ приливают стандартный раствор Б, согласно табл. 1. В одну колбу стандартный раствор не помещают. Во все колбы приливают по 10 см³ раствора лимонной кислоты, 10 см³ раствора желатина, 15 см³ аммиака, перемешивают и охлаждают. Затем приливают по 10 см³ раствора диэтилдитиокарбамата натрия, доливают до метки водой и перемешивают.

Оптическую плотность растворов измеряют, как указано в п. 2.3.3.

В качестве раствора сравнения используют раствор, не содержащий стандартного раствора меди.

По полученным значениям оптических плотностей и соответствующим им массам меди строят градуировочный график.

- 2.4. Обработка результатов
- Массовую долю меди (X) в процентах вычисляют по формуле

$$X = \frac{m_1}{m} \cdot 100, \tag{1}$$

где m₁ — масса меди, найленная по градуировочному графику, г; m — масса навески, соответствующая аликвотной части раствора пробы, г.

2.4.2. Нормы точности и нормативы контроля точности определения массовой доли меди приведены в табл.

Массовая доля меди, % тат		Допускаемые расхождения, %			
	Погреш- ность резуль- тэтов анализа,	двух сред- янх резуль- татов ана- иная, выпол- неных в различных условиях	двух па- радлель- ных оп- ределе- най	трех на- раллель- вых оп- ределе- ний	результатов амализа стандартно- го образца- от аттесто- ванного аначения
От 0.03 до 0.05 включ.	0.005	0.006	0.005	0.006	0.003
Ca. 0.05 > 0.10 >	0.000	0.013	0.003	0.013	0,003
> 0.10 > 0.20 >	0.019	0.025	0.020	0.024	0.012
> 0.2 > 0.5 >	0,015	0.025	0.03	0.024	0.012
	0,04	0.05	0.04	0.05	0.03
> 1.0 > 2.0 >	0.06	0,07	0,06	0,08	0.04
» 2,0 » 3,5 »	0.09	0,12	0.10	0.12	0.06

АТОМНО-АБСОРБЦИОННЫЙ МЕТОД

3.1. Сущность метода

Метод основан на измерении атомной абсорбции меди в пламени ацетилен-воздух при длине волны 324,8 км с предварительным растворением пробы в серной кислоте.

3.2. Аппаратура, реактивы и растворы

Атомно-абсорбционный спектрометр со всеми принадлежностя-

Кислота сериая по ГОСТ 4204, растворы 1:1 и 1:4.

Кислота фтористоводородная по ГОСТ 10484.

Кислота азотная по ГОСТ 4461.

Кислота соляная по ГОСТ 3118.

Титан треххлористый, раствор 150 г/дм³, содержащий 0,05 г/см³ титана.

Железо металлическое.

Раствор железа 20 г/дм³: 10 г растворяют при нагревании в 40 см³ соляной кислоты, приливают 5 см³ азотной кислоты и раствор кипятят до удаления оксидов азота. Охлажденный раствор перевосят в мерную колбу вместимостью 500 см³, доливают водой до метки и перемешивают.

Алюминий металлический.

Раствор алюминия 10 г/дм³: 5 г алюминия растворяют при нагревании в 60 см³ соляной кислоты с добавлением 5 см³ азотной кислоты. Раствор кипятят до удаления оксидов азота. После охлаждения раствор переносят в мерную колбу вместимостью 500 см³, доливают водой до метки и перемешивают.

Медь металлическая.

Стандартные растворы меди

Раствор А: 0,5000 г меди растворяют при нагревании в 25 см³ азотной кислоты, охлаждают, приливают 100 см³ воды, переносят

раствор в мерную колбу вместимостью 500 см³, доливают до метки водой и перемешивают.

Массовая концентрация меди в растворе A равна 0,001 г/см³.

Раствор Б: 10,0 см³ раствора А помещают в мерную колбу вместимостью 100 см³, доливают до метки водой и перемешивают.

Массовая концентрация меди в растворе Б равна 0,0001 г/сма-

3.3. Проведение анализа

3.3.1. При массовой доле кремния до 5 % навеску пробы, отобранную согласно табл. 3, помещают в стакан вместимостью 100 см³.

Таблица 3

Массовая доля медя, %	Масса жа- вески пробы, г	Масся медя в измерженом растворе пробы, 10-8 г	Стандартный раствор медя	Объем стандартного раствора, см ²
От 0,03 до 0,1 включ,	0.5	0,15-0,5	Б	1-6
Св. 0,1 » 0,5	0.2	0,2-1	Б	1-11
» 0,5 » 3,5	0.2	1-7	А	0,5-8

Приливают 20 см³ раствора серной кислоты (1:4) и растворяют при слабом нагревании. Затем по каплям добавляют 5 см³ азотной кислоты. Раствор выпаривают до выделения паров серной кислоты и охлаждают. Соли растворяют в 20 см³ воды при нагревании.

3.3.2. При массовой доле кремния свыше 5% навеску пробы, отобранную согласно табл. 3, помещают во фторопластовый стакан вместимостью 100 см³ или в чашку из стеклоуглерода или платины, приливают 20 см³ раствора серной кислоты (1:4), 5 см³ фтористоводородной кислоты, перемешивают и добавляют по каплям 5 см³ азотной кислоты. Раствор выпаривают до выделения паровсерной кислоты и охлаждают. Соли растворяют в 20 см³ воды при нагревании.

3.3.3. Охлажденный раствор, приготовленный по п. 3.3.1 или 3.3.2, переносят в мерную колбу вместимостью 100 см⁵, доливают

водой до метки и перемешивают.

В случае необходимости раствор фильтруют через сухой фильтрсредней плотности в сухую колбу, отбрасывая первые порции:

фильтрата.

Атомную абсорбцию меди измеряют параллельно в растворе контрольного опыта, растворах проб, растворах для построения градуировочного графика, растворе стандартного образца при длине волны 324, 8 нм в пламени ацетилен-воздух.

3.3.4. После вычитания значения атомной абсорбции раствора контрольного опыта из значения абсорбции раствора пробы содержание меди находят методом сравнения со стандартным образцом, с химическим составом, соответствующим требованиям. настоящего стандарта, или методом градуировочного графика, или методом добавок.

- 3.3.5. При применении метода сравнения навеску стандартного образца проводят через все стадии анализа, как указано в пп. 3.3.1 или 3.3.2 и 3.3.3.
- 3.3.6. При применении метода градуировочного графика в ряд стаканов приливают стандартный раствор меди, согласно табл. 3. В один стакан стандартный раствор не помещают. Во все стаканы приливают растворы железа, титана и алюминия в количествах, соответствующих их содержаниям в пробе, приливают 20 см³ раствора серной кислоты (1:4) и далее проводят анализ, как указано в пп. 3.3.1 и 3.3.3.

Градуировочный график строят по результатам, полученным после вычитания значения агомной абсорбции раствора, не содержащего стандартный раствор меди, из значения абсорбции растворов, содержащих стандартный раствор, и соответствующим им массам меди.

- 3.3.7. При применении метода добавок к навеске пробы добавляют такое количество стандартного раствора меди, чтобы значение атомной абсорбции пробы с добавлением стандартного раствора составляло не более двухкратной величины значения абсорбции раствора пробы и находилось в линейном диапазоне градуировочного графика. Далее анализ проводят, как указано в пп. 3.3.1 или 3.3.2 и 3.3.3.
 - 3.4. Обработка результатов
- 3.4.1. Массовую долю меди (X) в процентах, определяемую методом сравнения, вычисляют по формуле

$$X = \frac{\widehat{A}(D-D_1)}{D_2-D_1},$$
 (2)

где \widehat{A} — аттестованное значение массовой доли меди в стандартном образце, %;

D — значение атомной абсорбции раствора пробы;

D₁ — значение атомной абсорбции раствора контрольного опыта;

D₂ — значение атомной абсорбции раствора стандартного образца.

3.4.2. Массовую долю меди (X) в процентах, определяемую методом градуировочного графика, вычисляют по формуле

$$X = \frac{m_2}{m} \cdot 100,$$
 (3)

где m_2 — масса меди, найденная по градуировочному графику, г; m — масса навески пробы, г.

3.4.3. Массовую долю меди (X) в процентах, определяемую методом добавок, вычисляют во формуле

$$X = \frac{m_2(D-D_1)}{(D_3-D)m} \cdot 100,$$
 (4)

где та- масса меди, добавленная к навеске пробы, г;

 — значение атомной абсорбции раствора пробы без добавления стандартного раствора меди;

D₁ — значение атомной абсорбции раствора контрольного опыта;

D₃ — значение атомной абсорбции раствора пробы с добавлением стандартного раствора меди;

т - масса навески пробы, г.

3.4.4. Нормы точности и нормативы контроля точности определения массовой доли меди приведены в табл. 2.

ИНФОРМАЦИОННЫЕ ДАННЫЕ

- РАЗРАБОТАН И ВНЕСЕН Министерством металлургии СССР РАЗРАБОТЧИКИ
 - В. Г. Мизин, Т. А. Перфильева, С. И. Ахманаев, Г. И. Гусева
- УТВЕРЖДЕН И ВВЕДЕН В ДЕИСТВИЕ Постановлением Государственного комитета СССР по управлению качеством продукции и стандартам от 29.12.90 № 3751
- 3. Стандарт полностью соответствует СТ СЭВ 1238-89
- 4. B3AMEH FOCT 14250.5-80
- ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕН-ТЫ

Обозначение НТД, на который явна осылка	Номер пункта		
FOCT 3118—77 FOCT 3652—69 FOCT 3760—79 FOCT 4204—77 FOCT 4461—77 FOCT 8864—71 FOCT 10484—78 FOCT 11293—78 FOCT 16291—84 FOCT 26201—84 FOCT 28473—90	3.2 2.2 2.2 2.2, 3.2 2.2, 3.2 2.2, 3.2 2.2, 3.2 2.2, 3.2 1.1	,	