ОХРАНА ПРИРОДЫ

АТМОСФЕРА

МЕТОДЫ ОПРЕДЕЛЕНИЯ СКОРОСТИ И РАСХОДА ГАЗОПЫЛЕВЫХ ПОТОКОВ, ОТХОДЯЩИХ ОТ СТАЦИОНАРНЫХ ИСТОЧНИКОВ ЗАГРЯЗНЕНИЯ

Издание официальное

УДК 502.3:006.354 Группа Т58

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

Охрана природы

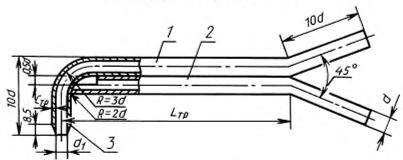
АТМОСФЕРА

ΓΟCT 17.2.4.06-90

Методы определения скорости и расхода газопылевых потоков, отходящих от стационарных источников загрязнения

Nature protection. Atmosphere. Methods for determination of velocity and flowrate of gas-and-dust streams from stationary sources of pollution

MKC 13.040.40 OKCTY 0017


Дата введения 01.01.91

Настоящий стандарт устанавливает методы определения скорости и объемного расхода газопылевых потоков (далее — газов), отходящих от стационарных источников загрязнения в газоходах и вентиляционных системах со скоростью не менее 4 м/с.

1. СРЕДСТВА ИЗМЕРЕНИЙ, РЕАКТИВЫ, ОБОРУДОВАНИЕ

Трубки напорные конструкции НИИОГАЗ (черт. 1).

Напорная трубка конструкции НИИОГАЗ

I, 2- полости для измерения полного и статического давления; 3- наконечник трубки Черт. 1

Микроманометры типа ММН-2400(5)-1,0, класса точности 1,0.

Термометр стеклянный технический по ГОСТ 28498.

Барометр класса точности не ниже 1.0.

Штангенциркуль по ГОСТ 166.

Излание официальное

Нутромер микрометрический по ГОСТ 10.

Рулетка металлическая по ГОСТ 7502.

Спирт этиловый по ГОСТ 5962*, раствор плотностью 0.8095 г/см3.

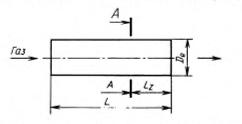
Трубки медицинские резиновые типа 1 по ГОСТ 3399 или полиэтиленовые по ГОСТ 18599.

Напорные трубки должны иметь свидетельство о метрологической аттестации.

Допускается применять другие средства измерений с метрологическими характеристиками, обеспечивающими требуемую точность измерений.

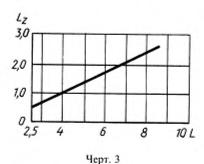
Перепечатка воспрещена

© Издательство стандартов, 1991
 © ИПК Издательство стандартов, 2003

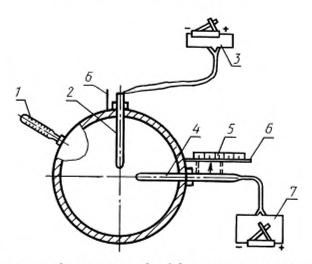

На территории Российской Федерации действует ГОСТ Р 51652—2000.

2. ПОДГОТОВКА К ВЫПОЛНЕНИЮ ИЗМЕРЕНИЙ

Измерения проводят при установившемся движении потока газа.


Измерительное сечение следует выбирать на прямом участке газохода на достаточном расстоянии от мест, где изменяется направление потока газа (колена, отводы и т. д.) или площадь поперечного сечения газохода (задвижки, дросселирующие устройства и т. д.).

2.2. Отрезок прямого участка газохода до измерительного сечения должен быть длиннее отрезка за измерительным сечением (черт. 2); отношение длин отрезков газохода до измерительного сечения и за ним устанавливается согласно черт. 3.


L= дляна прямого участка газохода, кратная D_{ε} ; A=A= нэмерительное сечение; $L_{z}=$ дляна прямого участка газохода за измерительным сечением, кратная D_{ε}

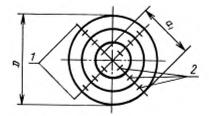
Черт. 2

- 2.3. Минимальная длина прямого участка газохода (L) должна составлять не менее 4—5 эквивалентных диаметров (D_c); если условие минимальной длины не может быть обеспечено, то следует увеличить количество точек измерений в два раза.
- 2.4. Собирают измерительную схему (черт. 4), при этом полости полного давления присоединяют к штуцеру микроманометра со знаком «+», а статического давления — к штуцеру со знаком «-».

Схема установки приборов в газоходе

I- термометр; 2, 4- контродьная и рабочая наворные трубки; 3, 7- микроманометры для измерений динамического давления в контродьной и рабочих точках; 5- линейка; 6- стальной пруток

Входные отверстия для измерений внутри газохода (фланцы, штуцера, термометрические гильзы и т. д.) в месте измерений должны быть выполнены таким образом, чтобы как можно меньше были нарушены поверхностные слои газохода (теплоизоляция, антикоррозийное покрытие и т. д.) и не было утечки газа или подсоса воздуха.


Определяют количество точек измерения п.

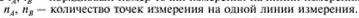
- Площадь измерительного сечения условно делят на составные равновеликие площадки, в центрах которых находятся точки измерения.
- Площадь поперечного сечения газохода круглого сечения условно делят на равновеликие кольца и четыре равновеликих сектора (черт. 5). Точки измерения находятся на двух взаимно перпендикулярных прямых, пересекающихся в центре измерительного сечения. Расстояние a_i от внутренней стенки газохода до точки измерения n_{\varnothing} в процентах от диаметра вычисляют по формуле

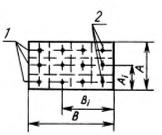
$$a_i = k_i \cdot D \cdot 10^{-2}$$
, (1)

где i — порядковый номер точки измерения;

 k_i — коэффициент, определяемый по табл. 2.

Для n = 12, $n_{20} = 6$ 1 – линии измерения; 2 – точки измерения


Черт. 5


2.5.2. Площадь поперечного сечения газохода прямоугольного или квадратного сечения условно делят на геометрические подобные равновеликие составные площадки (черт. 6). Точки измерения находятся в центрах тяжести равновеликих площадок, прямоугольные координаты которых по отношению к внутренней стенке газохода вычисляют по формулам:

$$A_i = A \frac{2i_A - 1}{2n_A}, \qquad (2)$$

$$B_i = B \frac{2i_B - 1}{2n_B}$$
, (3)

где i_A , i_B — порядковый номер точки измерения на линии измерения;

Для n = 12, $n_A = 3$, $n_B = 4$ I — линии измерения; 2 — точки измерения:

Черт. 6

Количество точек измерения в измерительном сечении должно соответствовать указанному в табл. 1. При этом эквивалентный диаметр газохода круглого сечения равен его внутреннему диаметру (D), а для газохода прямоугольного сечения его вычисляют по формуле

$$D_e = \frac{2A \cdot B}{A + B}$$
, (4)

где A, B — внутренние размеры газохода прямоугольного сечения, м.

		Количество точек измерения и в сечении							
D или $D_{e^{\alpha}}$ мм	$\frac{L}{D}$ или $\frac{L}{D_e}$	прямоугольном сеченям при соотношении сторон							
		круглом		or 1 × 1 go 1 × 1,6	св. 1 × 1,6 до 1 × 2,5	св. 1 × 2,5			
		п	n_{\odot}		$n_A \times n_B = n$				
До 200	Св. 5,5 От 4 до 5,5 включ.	1	1	$1 \times 1 = 1$ $2 \times 2 = 4$	$ 1 \times 2 = 2 \\ 2 \times 2 = 4 $	$1 \times 3 = 3$ $2 \times 3 = 6$			
От 200 до 900 включ.	Св. 5,5 От 4 до 5,5 включ. От 2,5 до 4 включ.	1 2 —	1 2 —	$1 \times 1 = 1$ $2 \times 2 = 4$ $2 \times 4 = 8$	$1 \times 2 = 2$ $2 \times 2 = 4$ $2 \times 4 = 8$	$1 \times 3 = 3$ $2 \times 3 = 6$ $2 \times 5 = 10$			
Св. 500 до 900 включ.	Св. 5,5 От 4 до 5,5 включ. От 2,5 до 4 включ.	4 8 12	2 4 6	$2 \times 2 = 4$ $2 \times 4 = 8$ $3 \times 4 = 12$	$2 \times 2 = 4$ $2 \times 4 = 8$ $3 \times 5 = 15$	$2 \times 3 = 6$ $2 \times 5 = 10$ $3 \times 5 = 15$			
Св. 900 до 1400 включ.	Св. 5,5 От 4 до 5,5 включ. От 2,5 до 4 включ. До 2,5	8 12 16 20	4 6 8 10	$2 \times 4 = 8$ $3 \times 4 = 12$ $4 \times 4 = 16$ $4 \times 6 = 24$	$2 \times 4 = 8$ $3 \times 5 = 15$ $3 \times 6 = 18$ $3 \times 8 = 24$	$2 \times 5 + 10$ $3 \times 5 = 15$ $3 \times 6 = 18$ $3 \times 8 = 24$			
Св. 1400 до 2000 включ.	Св. 5,5 От 4 до 5,5 включ. От 2,5 до 4 включ. До 2,5	12 16 —	6 8 —	$3 \times 4 = 12$ $4 \times 4 = 16$ $4 \times 5 = 20$ $4 \times 7 = 28$	$3 \times 5 = 15$ $3 \times 6 = 18$ $4 \times 5 = 20$ $4 \times 7 = 28$	$3 \times 5 = 15$ $3 \times 6 = 18$ $3 \times 7 = 21$ $3 \times 10 = 30$			
Св. 2000 до 2700 включ.	Св. 5,5 От 4 до 5,5 включ. От 2,5 до 4 включ. До 2,5	16 20 24 28	8 10 12 14	$4 \times 4 = 16$ $4 \times 5 = 20$ $4 \times 6 = 24$ $4 \times 8 = 32$	$3 \times 6 = 18$ $4 \times 5 = 20$ $4 \times 6 = 24$ $4 \times 8 = 32$	$3 \times 6 = 18$ $3 \times 7 = 21$ $3 \times 8 = 24$ $4 \times 11 = 44$			
Св. 2700 до 3500 включ.	Св. 5,5 От 4 до 5,5 включ. От 2,5 до 4 включ. До 2,5	20 24 28 32	10 12 14 16	$4 \times 5 = 20$ $4 \times 6 = 24$ $4 \times 7 = 28$ $4 \times 10 = 40$	$4 \times 5 = 20$ $4 \times 6 = 24$ $4 \times 7 = 28$ $4 \times 10 = 40$	$3 \times 7 = 21$ $3 \times 8 = 24$ $4 \times 7 = 28$ $4 \times 10 = 40$			
Св. 3500	Св. 5,5 От 4 до 5,5 включ. От 2,5 до 4 включ. До 2,5	24 28 32 36	12 14 16 18	$4 \times 6 = 24$ $4 \times 7 = 28$ $4 \times 8 = 32$ $4 \times 11 = 44$	$4 \times 6 = 24$ $4 \times 7 = 28$ $4 \times 8 = 32$ $4 \times 11 = 44$	$3 \times 8 = 24$ $4 \times 7 = 28$ $4 \times 8 = 32$ $4 \times 11 = 44$			

Таблица 2

rover	иче- во к из- ения		Козо	ффици	ент К, 1	три рас	чете р	азмера	а, в з	ависия	иости о	от кол	ичести	а гоче	квал	иний з	ізмере	ния	
n	no	1	2	3	4	5	6	7	8	9	10	11	12	13	14	1.5	16	17	18
36	18	1,41	4,36	7,51	10,91	14,64	18,82	23.65	29,59	38,21	61,79	70,41	76,35	81,18	85,36	89,09	92,49	95,64	98,59
32	16	1,59	4,93	8,54	12,50	16,93	22,05	28,35	37,50	62,50	71,65	77,95	83,07	87,50	91,46	95,07	98,41		
28	14	1,82	5,68	9,91	14,65	20,12	26,85	36,64	63,36	73,15	79.88	85,35	90,09	94,32	98,18				
24	12	2,13	6,70	11,81	17,72	25,00	35,57	64,43	75,00	82,28	88,19	93,30	97,87	1375					
20	10	2,57	8,17	14,65	22,61	34,19	65,81	77,39	85,35	91.83	91,43								
16	8	3,23	10,47	19,38	32,32	67,68	80,62	89,53	96,77		100								
12	6	4,36	14,65	29.59	70,41	85,35	95,64								ı			ı	
8	4	6,70	25,00	75,00	93,30	7	77.7					ı			ı			ı	
4	2	14,65	95,35	(chill															

3. ВЫПОЛНЕНИЕ ИЗМЕРЕНИЙ

3.1. Скорость (v) в м/с и расход газов определяют методом измерения динамического давления газа (P_n)

$$P_{n} = P_{n} - P_{er}, \qquad (5)$$

где P_a — полное давление газа, Па; $P_{c\tau}$ — статическое давление газа, Па;

и последующего расчета скорости газа по формуле

$$v = \sqrt{\frac{2Pg}{g}}$$
, (6)

где р — плотность газа при рабочих условиях, кг/м³.

(Поправка, ИУС 8-91).

3.2. Динамическое давление газа вычисляют по формуле

$$P_n = p \cdot \beta \cdot K_r$$
, (7)

где p — отсчет по шкале микроманометра, Па;

в — коэффициент, зависящий от угла наклона измерительной трубки микроманометра;

 $K_{\rm r}$ — коэффициент напорной трубки, определяемый при ее метрологической аттестации*.

3.3. Определение объемного расхода газа

 3.3.1. Объемный расход газа (V), определяемый посредством средней скорости газа (V). вычисляют по формуле

$$V = \overline{v} \cdot s$$
, (8)

где s — площадь измерительного сечения газохода, M^2 .

3.3.2. При выполнении измерений одну напорную трубку устанавливают в контрольной точке на расстоянии 30-100 мм от оси газохода. Рабочую напорную трубку перемещают по линии измерения, последовательно устанавливая в точках измерения с погрешностью, не превышающий ± 2 мм, при этом наконечники напорных трубок должны быть направлены навстречу газовому потоку. Измерения давления обеими трубками производят одновременно. Результаты измерений фиксируют в журнале, форма которого приведена в приложении 1. В каждой точке необходимо выполнить не менее трех измерений динамического давления; по результатам измерений определяется среднее динамическое давление для данной точки измерения.

При проведении измерений необходимо следить за отсутствием отложений пыли на напорных трубках.

 Одновременно измеряют температуру газа и разрежение (давление) в газоходе, а также атмосферное давление воздуха.

3.4. Определение площади измерительного сечения

- 3.4.1. Измеряют внутренние размеры газохода микрометрическим нутромером. При наличии внутри газохода поверхностных слоев в качестве расчетного сечения принимают действительно свободное сечение.
- 3.4.2. При невозможности непосредственного измерения внутренних размеров допускается определять размеры измерительного сечения измерением наружиых размеров газохода и толщины его стенки. Измерения необходимо проводить измерительной рулеткой. Толщину стенки измеряют штангенциркулем.
- З.4.3. Для газохода круглого сечения диаметр измеряют не менее четырех раз с приблизительно равными углами между измерительными диаметрами. Если разность результатов измерений более %, число измерений удваивают. Диаметр газохода определяют как среднеарифметическое всех измерений.
- 3.4.4. Для газохода прямоугольного сечения ширину и высоту измеряют на каждой измерительной горизонтали и вертикали. Если разность результатов более 1 %, число измерений удваивают. Ширину и высоту газохода принимают равными среднеарифметическому значению измерений соответствующих величин.

Для напорных трубок конструкции НИИОГАЗ Кт равен 0,55—0,6.

4. ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

- Динамическое давление газа в I-й точке измерения (P_{3I}) вычисляют по формуле (7).
- 4.2. Плотность газа при рабочих условиях вычисляют по формуле

$$\rho = 2,695 \rho_N \frac{P_o + P_{cr}}{273 + t},$$
(9)

где ρ_N — плотность газа при нормальных условиях, кг/м³;

t — температура газа в газоходе, *С;

 $P_{_{4}}$ — атмосферное давление воздуха, кПа.

(Поправка, ИУС 8-91).

 4.3. Плотность газа, состоящего из i компонентов, при нормальных условиях вычисляют по формуле

$$\rho_N = \frac{1}{100} - \sum_j \frac{m_j \cdot \Omega_i}{22.4}, \qquad (10)$$

где m_i — значения молекулярной массы j-го компонента газовой смеси;

 Ω_i — объемная доля *j*-го компонента газовой смеси, %;

22,4 — мольный объем при нормальных условиях, м³/к. моль.

Если известны плотности компонентов газовой смеси при нормальных условиях (ρ_{N_j}) , то плотность газовой смеси вычисляют по формуле

$$\rho = \sum_{j} \frac{\rho_{N} \cdot \Omega_{j}}{100}.$$
 (11)

Для приближенных расчетов плотность дымовых газов принимают равной плотности воздуха ($\rho = 1,29 \text{ кг/м}^3$).

4.4. Среднюю скорость газового потока вычисляют по формуле

$$v = \alpha \sqrt{\frac{2P_{ax}}{\rho}}$$
, (12)

где
 сде
 скоростей в измерительном сечении;

 $P_{\rm ax}$ — динамическое давление в контрольной точке измерительного сечения, Па.

4.4.1. Коэффициент поля скоростей (α) вычисляют по формуле

$$\alpha = \frac{1}{n} \sum_{i=1}^{n} \sqrt{\frac{P_{xi}}{P_{xx}}}.$$
(13)

Результаты измерений оформляют в соответствии с МИ 1317.

5. ОЦЕНКА ПОГРЕШНОСТИ ОПРЕДЕЛЕНИЯ СКОРОСТИ И РАСХОДА

5.1. В общем случае погрешность определения скорости и расхода газопылевых потоков, отходящих от стационарных источников загрязнения, включает в себя:

погрешность измерения динамического давления газа, его температуры и атмосферного давления воздуха;

погрешность определения коэффициента напорных трубок;

погрешность от угла наклона оси рабочей напорной трубки ф к оси потока;

погрешность от загрузки измерительного сечения напорными трубками;

погрешность от неточности установки рабочей напорной трубки в точках измерений;

погрешность осреднения скорости;

погрешность определения площади измерительного сечения.

5.2. Максимальная погрешность с доверительной вероятностью 95 % не должна превышать удвоенного среднеквадратичного отклонения

$$\delta = \pm 2$$
, (14)

- где δ максимальная погрешность, т. е. максимальное отклонение от среднего значения в произвольном ряду независимых измерений, равных по точности;
 - среднеквадратичное отклонение.
- 5.3. Относительное среднеквадратичное отклонение скорости в і-й точке измерений вычисляют по формуле

$$\frac{\sigma_{v}}{v_{i}} = \sqrt{\frac{1}{4} \left(\frac{\sigma P_{x}}{P_{x}}\right)^{2} + \frac{1}{4} \left(\frac{\sigma P_{u}}{P_{x}}\right)^{2} + \frac{1}{4} \left(\frac{\sigma_{x}}{P_{x}}\right)^{2} + \frac{1}{4} \left(\frac{\sigma_{x}}{K_{i}}\right)^{2} + \left(\frac{\sigma_{\phi}}{v_{i}}\right)^{2} + \left(\frac{\sigma_{\phi}}{v_{i}}\right)^{2}} + \left(\frac{\sigma_{\phi}}{v_{i}}\right)^{2}},$$
(15)

где $\frac{\sigma_{P_a}}{P_a}$, $\frac{\sigma_{P_a}}{P_a}$, $\frac{\sigma_{P_a}}{t}$ — относительные среднеквадратичные отклонения показаний микроманометра, барометра и термометра соответственно;

 $\frac{\sigma_{k}}{K_{r}}$ — относительное среднеквадратичное отклонение коэффициента напорных трубок; $\frac{\sigma_{\phi}}{v}$ — относительное среднеквадратичное отклонение, определяемое погрешностью от

 $\frac{\sigma_b}{i}$ — относительное среднеквадратичное отклонение, определяемое погрешностью от загрузки измерительного сечения напорными трубками.

Относительное среднеквадратичное отклонение средней в измерительном сечении скорости вычисляют по формуле

$$\frac{\overline{\sigma v}}{v} = \sqrt{\left(\frac{\sigma v_i}{v_i}\right)^2 \left(\frac{\sigma_i}{v_j}\right)^2 + \left(\frac{\sigma_e}{v_j}\right)^2} , \qquad (16)$$

где $\frac{\sigma_i}{v_i}$ — относительное среднеквадратичное отклонение, определяемое погрешностью осреднения скорости:

где $\frac{\sigma_e}{v_j}$ — относительное среднеквадратичное отклонение, определяемое погрешностью от неточности установки рабочей напорной трубки в точках измерения.

5.5. Относительное среднеквадратичное отклонение расхода газов вычисляют по формуле

$$\frac{\sigma_{\nu}}{V} = \sqrt{\left(\frac{\sigma_{s}}{v}\right)^{2} + \left(\frac{\sigma_{s}}{S}\right)^{2}},$$
(17)

где $\frac{\sigma_{_S}}{S}$ — относительное среднеквадратичное отклонение определения площади.

5.6. Оценка составляющих погрешности определения скорости и расхода

5.6.1 Среднеквадратичные отклонения результатов измерения динамического давления (σ), атмосферного давления (σP_a) и температуры газов (σt) в зависимости от показаний микроманометра, барометра и термометра в долях длины их шкалы приведены в табл. 3.

Таблица 3

Показания приборов, доли длины шкалы	$\sigma_{P_{_{\! A}}}$, $\sigma_{_{\! A}}^{P}$, $\sigma_{_{\! F}}$ для приборов класса точности					
токазания приобров, доли длина шкала	1.0	0,5				
1,00	± 0,5	± 0,25				
0,75	± 0.7	± 0,35				
0,50	± 1,0	± 0.50				
0,25	± 2,0	± 1,00				
0,10	± 5,0	± 2,50				
0,05	± 10,0	± 5,00				

- 5.6.2. Погрешность определения коэффициента напорной трубки (σK_i) указывают в свидетельстве о метрологической аттестации.
- 5.6.3. Для уменьшения погрешности от угла наклона оси рабочей напорной трубки к оси потока необходимо повернуть и зафиксировать трубку таким образом, чтобы показания микроманометра были максимальными.

В общем случае, если $\phi \le 5^{\circ}$, то $\frac{\sigma_q}{\nu} = 0.02$.

 5.6.4. Погрешность от загрузки измерительного сечения напорными трубками зависит от площади измерительного сечения и площади сечения наконечника напорной трубки (S_{rp}).

При $\frac{\Delta_{rp}}{S}$ не более 1 % погрешностью от загрузки измерительного сечения пренебрегают. В остальных случаях исключают указанную погрешность введением в результат измерения поправки, вычисляемой по формуле

$$P_{A}' = P_{A} \left(1 - 2, 1 \frac{S_{\tau p}}{S}\right),$$
 (18)

- где $P_{\rm g}'$ динамическое давление с учетом поправки, Па; $S_{\rm rg}$ площадь сечения наконечника напорной трубки, м². 5.6.5. Погрешностью от неточности установки рабочей напорной трубки в точках измерений при выполнении требований п. 3.3.2 пренебрегают.
- Логрешность осреднения скорости, обусловленная неравномерностью распределения поля скоростей в измерительном сечении, приведена в табл. 4.

Таблина 4

Форма измерительного сечения	п	Погрешность осреднения скорости, %, при расстоянии от места возму потока до измерительного сечения в эквивалентных диаметрах $\frac{\alpha \cdot \alpha_z}{D_c}$							
		1	2	3	5	6			
Kpyr	4 8 12	20 16 12	16 12 8	12 10 6	6 5 3	3 2 2			
Прямоугольник	4 16	24 12	20 8	15 6	8	4 2			

5.6.7. Погрешность определения площади измерительного сечения

 При непосредственном измерении внутреннего диаметра газохода относительное среднеквадратичное отклонение плошади измерительного сечения вычисляют по формуле

$$\frac{\sigma_s}{S} - \frac{2\sigma_{D_s}}{D_e},$$
(19)

где σ_D — среднеквадратичное отклонение эквивалентного диаметра газохода.

 При измерении наружного периметра газохода и толщины стенки относительное среднеквадратичное отклонение площади измерительного сечения вычисляют по формуле

$$\frac{\sigma_S}{S} \simeq \frac{4}{D_c - 2b} \sqrt{\frac{1}{4} \sigma_{D_\theta}^2 + \sigma_{\theta}^2},$$
(20)

где b — толщина стенки, м;

о_в — среднеквадратичное отклонение измерения толщины стенки.

Пример расчета погрешности определения скорости и расхода газа приведен в приложении 2.

6. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- Эксплуатация электроприборов и электроустановок, используемых в процессе проведения измерений, должна производиться в соответствии с требованиями ГОСТ 12.1.019, правилами технической эксплуатации электроустановок потребителей и правилами техники безопасности при эксплуатации электроустановок потребителей, утвержденными Госэнергонадзором.
- 6.2. Расположение и организация рабочих мест при проведении работ должны выполняться в соответствии с ГОСТ 12.2,032 и ГОСТ 12.2.033. Площадки для проведения работ должны быть ограждены перилами и бортовыми листами в соответствии со строительными нормами и правилами, утвержденными Госстроем СССР.

ПРИЛОЖЕНИЕ 1 Рекомендуемое

ФОРМА ЗАПИСИ РЕЗУЛЬТАТОВ ОПРЕДЕЛЕНИЯ СКОРОСТИ ГАЗОВ

Предприятие			Температура газа в газоходе, °C							
Время измерения	Номер измерения	Показания шкалы микромано- метра, мм	Коэффициент напор- ной трубки	Коэффициент наклонной трубки микро- манометра	Динамическое давление, мм вод. ст (Па)	Скорость газа, м/с				
Контрольн	ая точка измере	кин								
<i>i</i> -е точки и:	змерения	7								
2										
2										

ПРИЛОЖЕНИЕ 2 Справочное

ПРИМЕР РАСЧЕТА ПОГРЕШНОСТИ ОПРЕДЕЛЕНИЯ СКОРОСТИ И РАСХОДА ГАЗА*

1. Погрешность измерения местной скорости

Относительное среднеквадратичное отклонение градуировки напорной трубки.

Погрешность градуировки наворной трубки, определенная в результате ее аттестации, составляет ± 2 %.

В соответствии с разд. 5
$$\frac{\sigma_{K_y}}{K} = 0.01$$

1.2. Относительные среднеквадратичные отклонения показаний микроманометра, термометра и барометра класса 1,0 в верхней части диапазона измерений

$$\frac{\sigma_{P_a}}{P_a} = \frac{\sigma_{P_a}}{P_a} = \frac{\sigma_t}{t} = 0.005.$$

1.3. Относительное среднеквадратичное отклонение, определяемое погрешностью загрузки измерительного сечения напорными трубками $\frac{\sigma_b}{v_i} = 0.005$ при $\frac{S_{tp}}{S} \cdot 100 < 1$ % или при введении в результат измерений поправки по формуле (18).

Тогда относительное среднеквадратичное отклонение определения скорости в і-й точке измерения

$$\sigma_{\nu_j} = \sqrt{\frac{1}{4} \cdot 0.005^2 + \frac{1}{4} \cdot 0.005^2 + \frac{1}{4} \cdot 0.005^2 + \frac{1}{4} \cdot 0.005^2 + \frac{1}{4} \cdot 0.01^2 + 0.005^2} \ \equiv 0.02.$$

^{*} В примере приведены типичные для предусмотренных в настоящей методике условий и средств измерений значения погрещности при определении скорости и расхода газов. Однако их нельзя распространять на все случаи измерений. Предполагается, что коррекция систематических погрешностей не проводилась, а сочетание случайных и систематических погрешностей можно рассматривать как случайное.

C. 10 FOCT 17.2.4.06-90

2. Погрешность определения средней по сечению газохода скорости

2.1. Среднеквадратичное отклонение осреднения скорости

2.2. Относительное среднеквадратичное отклонение средней скорости

$$\frac{\sigma_{\nu}^{-}}{\nu} = \sqrt{0.02^{2} + 0.01^{2}} \equiv 0.022.$$

3. Погрешность определения расхода

3.1. Среднеквадратичное отклонение площади измерительного сечения

$$\frac{\sigma_{S}}{S} = 0.02$$
.

Относительное среднеквадратичное отклонение определения расхода

$$\frac{\sigma_{\nu}}{V} = \sqrt{0.0222 + 0.022} \equiv 0.03.$$

Таким образом, для приведенных в примере условий при определении скорости газа в i-й точке измерения, средней скорости и расхода газа среднеквадратичное отклонение и максимальная погрешность с доверительной вероятностью 95 % составят соответственно:

0,020 n ± 4,0 %

0.022 ± 4.4 %

0.030 ± 6,0 %

ИНФОРМАЦИОННЫЕ ДАННЫЕ

- 1. РАЗРАБОТАН И ВНЕСЕН Министерством тяжелого машиностроения СССР
- УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по охране природы от 3.07.90 № 27
- 3. ВВЕДЕН ВПЕРВЫЕ
- 4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначеняе НТД, на который дана ссылка	Номер раздела, пункта
ΓΟCT 10-88	Í
FOCT 12.1.019-79	6.1
ΓOCT 12.2.032—78	6.2
ΓΟCT 12.2.033—78	6.2
ΓΟCT 12.2.062—81	6.2
ΓΟCT 166—89	1
ΓΟCT 339976	1
ΓΟCT 5962—67	1
ΓΟCT 7502—98	İ
ΓOCT 18599—2001	1
ΓΟCT 28498—90	ì
МИ 1317—86	4.5

ИЗДАНИЕ (июль 2003 г.) с Поправкой (ИУС 8—91)

Редактор Р.С. Федорова
Технический редактор Л.А. Гусева
Корректор Н.Л. Рибалко
Компьютерная верстка А.Н. Золотаревой

Изд. лиц. № 02354 от 14,07.2000. Сдаво в набор 29.05.2003. Подписано в печать 22.09.2003. Усл.печ.л. 1,40. Уч.-изд.л. 1,15. Тираж 1,30 экз. С 12090. Зак. 827.