MKC 67.120.10

Поправка к ГОСТ 29299—92 (ISO 2918—75) Мясо и мясные продукты. Метод определения нитрита

В каком месте	Напечатано	Должно быть
Пункт 5.1.1	Растворяют в воде 106 г железосине-	Растворяют в воде 106 г железисто-
	родистого калия	синеродистого калия

(ИУС № 9 2022 г.)

межгосударственный стандарт

МЯСО И МЯСНЫЕ ПРОДУКТЫ

Метод определения нитрита

Meat and meat products. Determination of nitrite content

ГОСТ 29299—92 (ИСО 2918—75)

МКС 67.120.10 ОКСТУ 9209

Дата введения 01.01.94

1. НАЗНАЧЕНИЕ И ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящий стандарт устанавливает метод определения массовой доли нитрита в мясе и мясных продуктах.

2. НОРМАТИВНЫЕ ССЫЛКИ

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 1770—74 Посуда мерная лабораторная стеклянная. Цилиндры, мензурки, колбы, пробирки. Общие технические условия

ГОСТ 9792—73 Колбасные изделия и продукты из свинины, баранины, говядины и мяса других видов убойных животных и птиц. Правила приемки и методы отбора проб

ГОСТ 29169—91 (ИСО 648—77) Посуда лабораторная стеклянная. Пипетки с одной отметкой

3. ОПРЕДЕЛЕНИЕ

Массовая доля нитрита в мясе и мясных продуктах: массовая доля нитрита, определенная в соответствии с методикой, установленной в данном стандарте, выраженная в миллиграммах нитрита натрия на килограмм (в частях на миллион).

4. СУЩНОСТЬ МЕТОДА

Экстрагирование пробы горячей водой, осаждение белков и фильтрование. Получение красной окраски в присутствии нитрита путем добавления к фильтрату аминобензола сульфамида и *N*-1-нафтилэтилендиамина дигидрохлорида и фотометрическое измерение при длине волны 538 нм.

5. РЕАКТИВЫ

Все реактивы должны быть аналитическими. Вода должна быть дистиллированной или иметь эквивалентную чистоту.

5.1. Раствор для осаждения белков

5.1.1 Реактив I

Растворяют в воде 106 г железосинеродистого калия $[K_4Fe(CN)_6\cdot 3H_2O]$ и разбавляют до 1000 см³.

5.1.2. Реактив II

Растворяют в воде 220 г уксуснокислого цинка [$Zn(CH_3COO)_2 \cdot 2H_2O$] и 30 см³ ледяной уксусной кислоты и разбавляют до 1000 см³.

Издание официальное Перепечатка воспрещена

С. 2 ГОСТ 29299-92

5.1.3. Бура, насыщенный раствор

Растворяют 50 г тетраборнокислого натрия ($Na_2B_4O_7\cdot 10H_2O$) в 1000 см³ тепловатой воды и охлаждают до комнатной температуры.

5.2. Нитрит натрия, эталонные растворы

Растворяют в воде 1,000 г нитрита натрия ($NaNO_2$) и разбавляют до 100 см³ в мерной колбе с одной меткой. С помощью пипетки наливают 5 см³ раствора в мерную колбу вместимостью 1000 см³ и разбавляют до метки.

Готовят серию эталонных растворов, наливая с помощью пипетки 5, 10 и 20 см³ полученного раствора в мерные колбы вместимостью 100 см³ и доливая водой до метки. Полученные эталонные растворы содержат соответственно 2,5; 5,0 и 10,0 мкг нитрита натрия на 1 см³.

Эталонные растворы и разбавленный $(0,05 \text{ г/дм}^3)$ раствор нитрита натрия, из которого их получают, следует готовить в день проведения анализа.

5.3. Растворы для получения окраски

5.3.1. Раствор I

Растворяют, подогревая на водяной бане, 2 г аминобензола сульфамида ($NH_2C_6H_4SO_2NH_2$) в 800 см³ воды. Охлаждают, при необходимости фильтруют и добавляют, помешивая, 100 см³ концентрированной соляной кислоты (ρ_{20} 1,19 г/см³), затем доливают водой до 1000 см³.

5.3.2. Раствор II

Растворяют в воде 0,25 г N-1-нафтилэтилендиамина дигидрохлорида ($C_{10}H_7NHCH_2CH_2NH_2\cdot 2HCl$), доливают водой до 250 см³. Полученный раствор хранят в холодильнике, в хорошо укупоренной бутыли из коричневого стекла не более недели.

5.3.3. Раствор III

Разбавляют 445 см 3 концентрированной соляной кислоты (ρ_{20} 1,19 г/см 3) водой до 1000 см 3 .

6. ОБОРУДОВАНИЕ

Обычное лабораторное оборудование, а также:

- 6.1. Механическая мясорубка лабораторного типа с перфорированной пластиной, диаметр отверстий которой не превышает 4 мм.
 - 6.2. Аналитические весы.
- 6.3. Мерные колбы с одной меткой вместимостью $100,\ 200\$ и $1000\$ см 3 в соответствии с ГОСТ 1770.
- 6.4. Пипетки с одной меткой вместимостью 10 см³, при необходимости с другой вместимостью в зависимости от аликвотной части фильтрата (п. 8.4.1), соответствующие требованиям ГОСТ 29169.
 - 6.5. Кипящая водяная баня.
- 6.6. Фотоэлектрический колориметр или спектрофотометр с камерами, имеющими оптическую длину 1 см.
- 6.7. Гофрированная фильтровальная бумага диаметром около 15 см, не содержащая нитрита.
 - 6.8. Коническая колба вместимостью 300 см³.

7. ПРОБА

- 7.1. Используют показательную пробу массой не менее 200 г (см. ГОСТ 9792).
- 7.2. Пробу для анализа готовят сразу (п. 8.1) или, если это невозможно, хранят пробу при температуре от 0 до 5 °C в течение не более 4 сут.

8. ПРОВЕДЕНИЕ АНАЛИЗА

8.1. Приготовление пробы для анализа

Пропускают пробу через мясорубку (п. 6.1) не менее двух раз и перемешивают. Хранят в герметичном, целиком заполненном сосуде в охлажденном состоянии.

Анализ проводят не позднее чем через 24 ч после приготовления пробы.

 Π р и м е ч а н и е. Продукты, не подвергавшиеся кулинарной обработке, испытывают сразу же после измельчения.

8.2. Образец для анализа

Взвешивают 10 г пробы с точностью до 0,001 г.

8.3. Освобождение от белков

- 8.3.1. Образец для анализа помещают в коническую колбу (п. 6.8) и добавляют последовательно 5 см 3 насыщенного раствора буры (п. 5.1.3) и 100 см 3 воды при температуре не ниже 70 °C.
 - 8.3.2. Нагревают колбу на кипящей бане (п. 6.5) в течение 15 мин, периодически встряхивая.
- 8.3.3. Дают колбе с содержимым остыть до комнатной температуры и добавляют последовательно 2 см^3 реактива I (п. 5.1.1) и 2 см^3 реактива II (п. 5.1.2), тщательно перемешивая после каждого добавления.
- 8.3.4. Переливают содержимое в мерную колбу вместимостью 200 см³ (п. 6.3), доливают водой до метки и перемешивают. Содержимое колбы выдерживают в течение 30 мин при комнатной температуре.
- 8.3.5. Осторожно сливают верхний слой жидкости и фильтруют его через гофрированную фильтровальную бумагу (п. 6.7), получая прозрачный раствор.

8.4. Колориметрическое измерение

- 8.4.1. Пипеткой переносят часть фильтрата (V, см³), но не более 25 см³, в мерную колбу вместимостью 100 см³ (п. 6.3) и доливают водой до 60 см³.
- 8.4.2. Добавляют 10 см 3 раствора I (п. 5.3.1), затем 6 см 3 раствора III (п. 5.3.3), перемешивают и оставляют на 5 мин в темноте при комнатной температуре.
- 8.4.3. Добавляют 2 см 3 раствора II (п. 5.3.2), перемешивают и оставляют на 3—10 мин в темноте при комнатной температуре. Затем разбавляют водой до метки.
- 8.4.4. Измеряют показатель спектрального поглощения раствора на фотоэлектрическом колориметре или спектрофотометре (п. 6.6) при длине волны около 538 нм.

П р и м е ч а н и е. Если показатель спектрального поглощения окрашенного раствора, полученного из образца для анализа, превышает соответствующий показатель для эталонного раствора с максимальной концентрацией, повторяют все действия, указанные в п. 8.4, уменьшив количество фильтрата, взятого в п. 8.4.1.

8.5. Количество определений

Проводят два независимых определения на двух отдельных образцах, взятых из одной пробы для анализа.

8.6. Калибровочная кривая

- 8.6.1. С помощью пипетки наливают в четыре мерные колбы (п. 6.3) вместимостью 100 см^3 10 см^3 воды и 10 см^3 каждого из трех эталонных растворов нитрита натрия (п. 5.2), содержащих 2,5; 5,0 и 10,0 мкг нитрита на 1 см^3 .
- 8.6.2. Вычерчивают калибровочную кривую, нанося на график полученные показатели спектрального поглощения против показателей концентрации эталонных растворов в микрограммах на 1 см³.

9. ОБРАБОТКА РЕЗУЛЬТАТОВ

9.1. Подсчет результатов

Содержание нитрита в пробе, выраженное в миллиграммах нитрита натрия на килограмм, вычисляют по формуле

$$NaNO_2 = C \frac{2000}{m \cdot V},$$

где m — масса образца, г;

V— объем части фильтрата (см. п. 8.4.1), взятой для фотометрического определения, см³;

С — концентрация нитрита натрия в мкг/см³, определенная по калибровочной кривой и соответствующая показателю спектрального поглощения раствора, полученного из образца (см. п. 8.4.4).

За результат анализа принимают среднеарифметическое значение результатов двух определений, при условии соблюдения требования к воспроизводимости (см. п. 9.2). Результат выражают с точностью до 1 мг на килограмм продукта.

С. 4 ГОСТ 29299-92

9.2. Воспроизводимость результатов

Разница между результатами двух определений, проводимых одновременно или в близкой последовательности одним и тем же лицом, может составлять не более 10 % от среднего результата.

10. ПРОТОКОЛ АНАЛИЗА

В протоколе анализа указывают использованный метод и полученные результаты, все действия, не предусмотренные данным стандартом или рассматриваемые как дополнительные, а также любые обстоятельства, которые могли бы повлиять на результат.

В протокол должны быть также включены все сведения, необходимые для полной идентификации пробы.

ИНФОРМАЦИОННЫЕ ДАННЫЕ

- 1. РАЗРАБОТАН И ВНЕСЕН Всесоюзным научно-исследовательским и конструкторским институтом мясной промышленности
- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Комитета стандартизации и метрологии СССР от 10.02.92 № 128

Настоящий стандарт подготовлен методом прямого применения международного стандарта ИСО 2918—75 «Мясо и мясные продукты. Определение содержания нитрита (арбитражный метод)»

- 3. ВВЕДЕН ВПЕРВЫЕ
- 4. ПЕРЕИЗДАНИЕ

MKC 67.120.10

Поправка к ГОСТ 29299—92 (ISO 2918—75) Мясо и мясные продукты. Метод определения нитрита

В каком месте	Напечатано	Должно быть
Пункт 5.1.1	Растворяют в воде 106 г железосине-	Растворяют в воде 106 г железисто-
	родистого калия	синеродистого калия

(ИУС № 9 2022 г.)