ЭЛЕКТРОУСТАНОВКИ ДЛЯ ОТКРЫТЫХ ПЛОЩАДОК ПРИ ТЯЖЕЛЫХ УСЛОВИЯХ ЭКСПЛУАТАЦИИ (ВКЛЮЧАЯ ОТКРЫТЫЕ ГОРНЫЕ РАЗРАБОТКИ И КАРЬЕРЫ)

Часть 2

Общие требования к защите

Издание официальное

Предисловие

- 1 ПОДГОТОВЛЕН И ВНЕСЕН Техническим комитетом по стандартизации ТК 403 «Взрывозащищенное и рудничное электрооборудование»
- 2 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Госстандарта России от 16 июля 1992 г. № 720
- 3 Настоящий стандарт подготовлен методом прямого применения международного стандарта МЭК 621-2—87 «Электрические установки для открытых площадок при тяжелых условиях эксплуатации (включая открытые горные разработки и карьеры). Часть 2. Общие требования» с дополнительными требованиями отражающими потребности народного хозяйства
 - 4 ВВЕДЕН ВПЕРВЫЕ
 - 5 ПЕРЕИЗДАНИЕ

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания без разрешения Госстандарта России

4.5 II

ГОСУДАРСТВЕННЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

ЭЛЕКТРОУСТАНОВКИ ДЛЯ ОТКРЫТЫХ ПЛОЩАДОК ПРИ ТЯЖЕЛЫХ УСЛОВИЯХ ЭКСПЛУАТАЦИИ (ВКЛЮЧАЯ ОТКРЫТЫЕ ГОРНЫЕ РАЗРАБОТКИ И КАРЬЕРЫ)

Часть 2

гь 2 50020.2—92

Общие требования к защите

(M9K 621-2-87)

ГОСТ Р

Electrical installations for outdoor sites under heavy conditions (including open — cast mines and quarries). Part 2. General protection requirements

OKC 29.260.99 OKCTY 3300, 3400

Дата введения 1993-01-01

ГЛАВА І. ЗАЩИТА ОТ НЕПОСРЕДСТВЕННОГО ПРИКОСНОВЕНИЯ (ЗАЩИТА ОТ ПОРАЖЕНИЯ ЭЛЕКТРИЧЕСКИМ ТОКОМ ПРИ НОРМАЛЬНОЙ РАБОТЕ)

Вволная часть

В настоящей главе приведены требования к защите от непосредственного прикосновения для всех электроустановок напряжением до 1000 В включ, и св. 1000 В. Требования к электроустановкам напряжением до 1000 В включ. взяты, в основном, из стандартов серии МЭК 364 для случаев, когда они приемлемы.

Дополнения, учитывающие потребности народного хозяйства, в тексте настоящей главы выделены курсивом.

1 Общие требования

Меры защиты от непосредственного прикосновения, кроме описанных в 1.1, должны быть обеспечены в соответствии с требованиями раздела 6 и одного из разделов 2—4 или 5.

1.1 Исключения из общих требований

а) Ограничение напряжения

Защиту от непосредственного прикосновения считают обеспеченной при применении малого напряжения, которое установлено настоящим и другими действующими государственными стандартами.

b) Ограничение разряда энергии

На стадии рассмотрения.

с) Нулевые рабочие и защитные проводники

Защиту от непосредственного прикосновения для нулевых рабочих и защитных проводников считают обеспеченной, если такие проводники устанавливают в соответствии с требованиями, изложенными в 8.1, 10.5, 11.1 и 12.2.

2 Полная защита при помощи ограждений или оболочек

Ограждения или оболочки предназначены для предотвращения непосредственного контакта персонала или животных с частями электроустановки, находящимися под напряжением. Минимальные электрические воздушные расстояния между неизолированными проводниками и между такими проводниками и заземленными частями (например, ограждениями и оболочками) приведены в таблицах 1 и 2. Указанные в таблицах расстояния не должны применяться для электроаппаратуры электрических монтажных схем, промышленных агрегатов или установок, которые соответствуют требованиям других стандартов.

Т а б л и ц а 1 — Расстояния между неизолированными проводниками, а также проводниками и заземленными частями, находящимися внутри помещений

Максимальное действующее значение номинального рабоче- го напряжения, кВ	1	3	6	10	20	30	45	60	110
Минимальные расстояния для установок при условии пере- напряжений, мм	40	65	90	115	215	325	520	700	1100
Минимальные расстояния для установок, защищенных от перенапряжений или подсоеди- ненных к кабелям, мм	40	60	70	90	160	270	380	520	950

Т а б л и ц а 2 — Расстояния между неизолированными проводниками, а также проводниками и заземленными частями, находящимися вне помещений

Максимальное действующее значение номинального рабоче- го напряжения, кВ	10	20	30	45	60	110	150	220
Минимальные расстояния для установок при условии пере- напряжения, мм	150	215	325	520	700	1100	1550	2200
Минимальные расстояния для установок, защищенных от перенапряжений или подсоеди- ненных к кабелям, мм	150	160	270	380	520	950	1350	1850

В таблицах 1 и 2 принимают во внимание, что напряжение сети может отклоняться до 20 % от номинального рабочего напряжения.

Таблицы могут быть использованы для определения расстояний между проводниками и землей в энергосистемах TN или TT с учетом напряжения между фазой и землей.

При определении минимальных расстояний не принимают во внимание такие факторы, как длину пути утечки, различные уровни напряжений одного порядка, сложные окружающие условия и т. д.

Длина пути утечки между проводниками, проложенными в полевых условиях, и заземленными частями, такими как барьеры и оболочки, должна быть не менее указанной в таблице 3, с учетом ожидаемой степени загрязнения.

Длина пути утечки, приведенная в таблице 3, должна умножаться на отношение линейного напряжения к напряжению между фазой и землей (3 в системе трехфазного тока) в случаях, когда:

- а) используют систему ІТ;
- b) между фазами помещают изоляторы, например фазовые разделители.

47

Т а б л и ц а 3 — Соотношение между степенью загрязнения и длиной пути утечки

Степень загрязнения	Основные характеристики (см. примечания I – 3)	Удельная длина пути утечки, мм/кВ, не менее (см. примечания 4-6)
I Легкая	Загрязнение отсутствует или имеются только сухие и непроводящие виды заг- рязнения. Загрязнение не имеет ника- кого влияния	16
II Средняя	Имеется только непроводящее загряз- нение. Однако может иметь место вре- менная проводимость, обусловленная скоплением загрязнений	20
III Сильная	Имеются проводящие или сухие, а так- же непроводящие загрязнения, став- шие проводящими в результате их скоп- ления	25
IV Очень сильная	Имеется постоянная проводимость, создаваемая проводящей пылью, дож- дем или снегом	31

Примечания

- 1 Приведенная классификация характеристик загрязнения не может охватить всю область возможных загрязнений. Может возникнуть необходимость в увеличении длины пути утечки из-за особого вида загрязнений. В таком случае следует принимать во внимание изменения степеней загрязнения в зависимости от сезона и особых климатических условий.
- 2 Во всех случаях, за исключением степени загрязнения I, следует учитывать возможность конденсации воды, источниками которой могут быть:
 - а) температура поверхности изоляции, снижающаяся ниже точки росы окружающего воздуха;
- б) гигроскопическая пыль и солевые загрязнения, вызывающие выпадение влаги при относительно низкой влажности.
- 3 Источником проводящей пыли может быть окружающая среда (например, добываемые и обрабатываемые породы) или пылеобразование может происходить внутри оболочки (например, пыль от угольных или металлических щеток).
- 4 Значения, приведенные в таблице, были получены на основании результатов испытаний изоляторов из обычного фарфора и стекла. При выборе изоляторов необходимо руководствоваться ГОСТ 9920.
 - 5 Для длины пути утечки применяют допуски, установленные соответствующими стандартами.
 - 6 Напряжение соответствует наиболее высокому линейному напряжению для данного оборудования.

2.1 Защита от непосредственного прикосновения к частям, находящимся под напряжением

Все части, находящиеся под напряжением, должны быть закрыты оболочками или ограждениями, обеспечивающими защиту согласно таблице 4.

2.2 Прочность и устойчивость ограждений и оболочки

Ограждения и оболочки должны крепиться неподвижно.

С учетом типа, размеров и расположения они должны иметь достаточную устойчивость (прочность) и продолжительность срока службы, чтобы противостоять деформации при ударах, которые могут возникнуть при нормальной работе.

2.3 Доступ к установке

Если необходимо переместить ограждения, открыть оболочки или вынуть части этих оболочек (двери, рамы, крышки, люки и т. д.), то это должно быть сделано в соответствии с требованиями одного из следующих пунктов.

а) Специальные ключи или инструменты

При передвижении, открывании и перемещении ограждений или частей оболочек следует применять ключ или инструмент.

b) Блокирующее устройство

Т а б л и ц а 4 — Минимальная защита от непосредственного прикосновения с электрооборудованием, находящимся под напряжением, при помощи ограждений или оболочек (применяют только к частям, находящимся под напряжением)

Диапазон напря- жения переменно- го тока, В	Рабочая зона	Зона проведения электротехничес- ких работ	Закрытая зона проведения электротехнических работ
50< <i>U</i> ≤1000	Полная защита IP2X или IP4X для легкодо- сгупных верхних повер- хностей ограждений или оболочек. Это при- менимо к тем частям оболочек, которые яв- ляются неподвижны- ми**	Частичная защита IP1X*, если U≤660 В или если части под различным напряжением, доступ к которым не может быть обеспечен одновременно, расположены в пределах досягаемости. Полная защита IP2X, если U>660 В, или IP4X, если U>660 В для легкодоступных наружных поверхностей или перегородок, или оболочек. Это применимо особенно к тем частям, которые могут служить в качестве неподвижной поверхности	Частичная защита IP1X*, если $U>660$ В или если части, нахо- дящиеся под различным на- пряжением, доступ к которым не может быть обеспечен од- новременно, расположены и
U>1000	Полная защита IP5X в пределах досягаемости рукой Частичная защита IP2X вне пределов досягаемости рукой	Полная защита IP5X в пределах досягаемости рукой Частичная защита IP1X вне зоны досягаемости рукой	Частичная защита IP1X*

U — номинальное линейное напряжение установки,

** Применение напольных штепсельных розеток не запрещают, но при этом в нерабочем состоянии они должны быть закрыты.

Примечания

1 Классификация IP принята по ГОСТ 14254. В настоящем стандарте классификацию IP используют только для определения степени защиты, требуемой для защиты персонала от контакта с частями, находящимися под напряжением. Может потребоваться также дополнительная защита от контакта с движущимися частями и от проникновения твердых инородных тел, например пыли.

2 В случае применения напряжения постоянного тока диапазоны напряжений, приведенные в таблице, могут увеличиваться в пропорции 1:1, 5, а именно до 1500 В.

Необходимо предусмотреть блокирующее устройство, так как при перемещении, открывании или выдвижении ограждений или частей оболочек без применения ключей или инструментов возникает необходимость в предварительном отключении всех частей, находящихся под напряжением, позади ограждения или оболочки, к которым можно случайно прикоснуться. Восстановление питания возможно только после перемещения или повторного включения блокировки ограждений или оболочек.

При разряде запасенной энергии в конденсаторах или кабельных системах, который может привести к возникновению электрического удара, необходимо принимать меры предосторожности.

с) Автоматическое разъединение

При перемещении, выдвижении или открывании электрической установки без применения ключа или инструмента автоматическое отключение энергии должно произойти раньше, чем может появиться возможность случайного прикосновения к частям, находящимся под напряжением, расположенным за пределами ограждения или оболочки. Восстановление питания возможно только после перемещения или повторного включения блокировки ограждений или оболочек.

d) Внутренний экран (барьер)

^{*} Для зон электрического действия и для закрытых зон электрического действия защиту типа IP1X достигают путем выноса частей, находящихся под напряжением, за пределы досягаемости или путем введения препятствий, например посредством защитных ограждений или оболочек (разделы 4 и 5).

Внутренний экран должен быть расположен так, чтобы ни к одной части электрической установки, находящейся под напряжением, нельзя было прикоснуться во время передвижения ограждений и снятия оболочек. Применять экран следует в соответствии с требованиями 2.1 (кроме случаев, описанных в подпункте е), приведенном ниже) и 2.2.

Экран может быть или неподвижно закреплен в определенном положении или иметь возможность перемещаться, но таким образом, чтобы в момент сиятия ограждений или оболочек он занимал нужное положение. Экран следует снимать, только используя ключ или инструмент.

Таким экраном может служить защитная штора, которую в разъединительном устройстве помещают перед контактами питающей линии.

е) Доступ к предохранителям или лампам

Если части электроустановки, находящиеся за ограждениями или внутри оболочки, нужно заменить вручную (замена дамп или плавких вставок), то их замена, открывание или удаление без применения ключа или инструмента и без отключения энергии возможны только при одновременном соблюдении следующих условий:

- i) Внутри ограждений или оболочек должно быть второе ограждение для предотвращения непосредственного прикосновения человека к частям электрической установки, находящимися под напряжением и не защищенными другими защитными средствами. Однако второе ограждение не должно мешать намеренному контакту человека с частями электроустановки, находящимися под напряжением.
 Перемещение второго ограждения возможно только при использовании ключа или инструмента;
- іі) напряжение на частях, расположенных позади второго ограждения, не должно превышать 660 В.

3 Полная защита путем изоляции частей, находящихся под напряжением

Изоляцию применяют для предотвращения любого контакта обслуживающего персонала или животных с частями электрической установки, находящимися под напряжением.

3.1 Качество изоляции

Части электрической установки, находящиеся под напряжением, должны быть полностью покрыты изоляцией, которую можно удалить только разрушением.

3.2 Тип изоляции

Применение изоляции должно отвечать требованиям, предъявляемым к электрооборудованию.

4 Частичная защита путем помещения частей, находящихся под напряжением, вне пределов досягаемости

Части электрической установки, находящиеся под напряжением, помещают вне пределов досягаемости для предотвращения непреднамеренного контакта с ними (см. таблицу 4).

4.1 Защиту от поражения электрическим током при нормальной работе путем помещения частей электрической установки, находящихся под напряжением, вне пределов досягаемости в любом направлении считают обеспеченной, если одновременно доступные части электрической установки, находящиеся под напряжением, расположены на расстоянии не меньше минимального, установленного в таблице 5 для соответствующего напряжения.

Если место, обычно занимаемое персоналом, ограничено ограждением, степень защиты которого меньше IP2X, то расстояние следует отсчитывать от этого ограждения.

Примерами таких ограждений могут служить поручни, сетки, барьеры частичной защиты.

ГОСТ P 50020.2-92

T а б л и ц а 5 — Минимальные расстояния, которые должны соблюдаться в рабочих и обслуживающих проходах для установок, расположенных внутри помещений

Размеры в миллиметрах

Максималь-				anda mo		Частичная защи	га или	отсутс	твие з	ащиты	(см. таб	анцу 4														
ное дей- ствующее	Полная защита (см. таблицу 4)				Части, находящиеся под напряжением с одной стороны с защитой типа IP1X или IP0X																					
значение номиналь- иого рабочего напряже-	Высота частей под огражде-	частей между ограж- под дениями или дениями или находя гражде- ручками ручками под на:	частей между ограж- под дениями или дениями или находящихся		между ограж- дениями или		между ограж- дениями или		между ограж- дениями или		между ограж- дениями или		между ограж- дениями или		к- между ограж- и дениями или ручками		раж- между ограж- или дениями или и ручками ения переключения		между ограж- дениями или дениями или ручками ручками переключения		ежду ограж- зниями или находящихся находящимие ручками под напряже напряжени		частя гмися	ми, под	проход	одныя перед сами ления
ния, кВ	ниями		and a second	and a second	and a second	переключения переключения	переключения	переключения	переключения		уровнем пола	Обслуж		racora							Обслу- жива-	Pago-				
оболоч» ками	Обелу- живание	Работа	Обелу- живание	Работа		IP1X	IP0X	IPIX	IP0X	ние	ra															
1		700	700	700	700	2300		1000	1000	1000	700	700														
3	1						1000	7.5	1165		-															
6							147	1300	1190	1500																
10			100			2500	1015		1215			12 M														
20	2000	800	1000	1000	1200		1115		1315		800	1000														
30			1377	18/18			1225	1325	1425	1525		93.0														
45				- A A		2700	1420	1520	1620	1720																
60]					2800	1600	1700	1800	1900																
110						3250	2000	2100	2200	2300	1															

Окончание таблицы 5

Размеры в миллиметрах

Максимальное	4	Частичная защита или отсутствие защиты (см. таблицу 4)							
действующее значение	Части, находящиеся под напряжением с двух сторон с защитой типа IP1X или IP0X								
номинального рабочего напряжения, кВ	Высота частей, находящихся под			тями под на ии с обеих с		Свободный проход межд ручками управления			
	напряжением, над уровнем пола	Обслуживание		Работа		Обслужи-	Работа		
		IPIX	1P0X	IPIX	IP0X	вание			
1	2300	1000	1000	1200	1200	900	1100		
3		1330		1530	2200		1200		
6		1380	2000	1580					
10	2500	1430		1630					
20		1630	1	1830		1000			
30		1850	2050	2050	2250	1			
45	2700	2240	2440	2440	2640	1			
60	2800	2600	2800	2800	3000	†			
110	3250	3400	3600	3600	3800	†	4		

5 Частичная защита при помощи барьеров

Частичную защиту введением промежуточных барьеров осуществляют для предотвращения случайного контакта с частями, находящимися под напряжением, а не умышленного проникновения через барьер рукой.

- 5.1 Барьеры, введенные для защиты от электрического поражения при нормальной работе, предотвращают:
- непреднамеренный контакт человека с частями электрооборудования, находящимися под напряжением; это достигают, например, с помощью защитных барьеров, ограждений или перегородок;
- непреднамеренный контакт с частями электрооборудования, находящимися под напряжением, когда за электрооборудование под напряжением берутся руками во время работы (например, с помощью экранов или защитных рукояток для плавких предохранителей).

Барьер может перемещаться без использования ключа или инструмента, но он должен быть так закреплен, чтобы исключалось ненамеренное непроизвольное его перемещение.

6 Минимальные расстояния, которые должны соблюдаться в рабочих и обслуживаемых проходах для оборудования, находящегося внутри помещения

Минимальные расстояния обеспечивают защиту от непосредственного прикосновения и в то же время позволяют производить работу и обслуживание.

6.1 Минимальные расстояния

Для установок, находящихся внутри помещений, минимальные рабочие и обслуживающие проходы должны соответствовать указанным в таблице 5.

П р и м е ч а н и е — С учетом местных требований могут быть установлены более широкие проходы.

6.2 Минимальные расстояния по ширине

При невозможности соблюдения заданных размеров можно уменьшить расстояния, указанные в таблице 5, по ширине при условий, что степень защиты будет равна или больше IP4X. Минимальное расстояние может быть уменьшено до 375 мм для узких проходов длиной до 2 м.

6.3 Подходы

При определении подходов к рабочим и обслуживающим проходам нужно учитывать следующее.
а) Для напряжений до 1000 В включ.

Для установок, имеющих рабочее напряжение не более 1000 В, рабочие и обслуживающие проходы длиной св. 20 м должны быть доступны с обоих концов. Для проходов длиной менее 20 м, но более 6 м, рекомендуется проход с двух концов.

b) Для напряжения св. 1000 В

Для установок, имеющих рабочее напряжение св. 1000 B, рабочие и обслуживающие проходы длиной св. 6 м должны иметь подход с двух концов.

Для очень длинных проходов рекомендуются дополнительные подходы.

с) Дверцы смотрового люка

Рекомендуется, чтобы дверцы смотрового люка проходов:

і) открывались наружу.

 Π р и м е ч а н и е — В герметических помещениях и других специальных камерах может потребоваться установка дверей, открывающих наружу;

- іі) открывались не вручную;
- ііі) имели свободное пространство с наружной стороны двери площадью хотя бы 1,5 м² и приблизительно одинаковое по ширине и длине.

7 Минимальные воздушные расстояния в наружных установках

7.1 Применение

Этот раздел устанавливает минимальные воздушные расстояния в наружных установках между неизолированными частями под напряжением на месте их монтажа, и:

- а) ограждением этих частей под напряжением (см. 7.2);
- в) зонами внутри ограждений, в которые обычно имеется доступ для персонала (см. 7.3);

 с) барьерами внутри ограждений, ограничивающих доступ персонала к частям под напряжением (см. 7.4).

В основу определения минимальных расстояний взято удобство доступа персонала на высоте 2300 мм над уровнем пола, но эти расстояния не могут помещать персоналу проникнуть в зону перекрытия изоляторов дугой.

В случае, когда части установки под напряжением являются воздушными линиями, иужно принять меры предосторожности, не допускающие уменьшения расстояний из-за стрелы провеса провода, порывов ветра, действия короткого замыкания или обрыва изолятора, когда параллельно используют несколько гирлянд изоляторов.

В отечественной практике при выборе минимальных воздушных расстояний в наружных установках необходимо руководствоваться «Правилами устройства электроустановок».

7.2 Минимальные расстояния по отношению к ограждениям

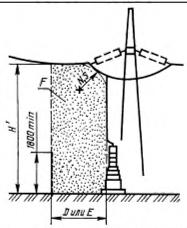
Ограждения вокруг неизолированных частей под напряжением должны иметь высоту не менее 1800 мм. Ограждение должно устанавливаться таким образом, чтобы части под напряжением были вне зоны, указанной на рисунке 1 и определенной в таблице 6, учитывающей тип используемого ограждения.

П р и м е ч а н и е — При определении минимальной высоты ограждения и минимальных расстояний были приняты во внимание соображения защиты от непосредственного прикосновения. Могут потребоваться дополнительные меры для ограждения доступа.

Т а б л и ц а 6 — Минимальные расстояния в наружных установках между изолированными частями под напряжением на месте их монтажа

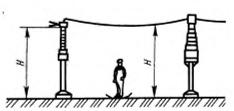
Размеры в миллиметрах

Номи- нальное напряже-	частей под	ная высота а напряже-	Горизонта.	The state of the s		стями под нап и (см. рисунки	• • • • • • • • • • • • • • • • • • • •	перегородками	
ние $U_{\text{ном}}$, кВ	поверхно	оступными остями Н унки 2—4)	дений*	А пных ограж- высотой не се 1800	ний с имеющим	В или огражде- экраном, и высоту ие е 1800	описанных В, высот 1800 и п поручням канатами случае выс	С граждений, ь в графах А и ой не менее ерегородок с и, цепями и ", в любом отой не менее	
	Уста	новки	Установки		Уста	новки	Установки		
	ме защи- щенные от перенапря- жения H=N+2300, но не менее 2600	защищенные от перенап- ряжений вля присое- диненные к кабелям H=S+2300, но не менее 2600	не защи- щенные от перенапря- жения A=N	защищенные от перенап- ряжений вля присое- диненные к кабелям A=S	не защи- щенные от перенапря- жения В=N+100	защищенные от перенап- ряжений яли присое- диненные к кабелям B = S + 100	не защи- щенные от перенапря- жения С=N+300, но не менее 600	защишенные от перенап- ряжений или присоединен- ные к кабелям С-\$ = \$300, но не менее 600	
3	2600		150	150	250	250	600	600	
10		2600							
20	1		215	160	315	260			
30	2625		325	270	425	370	625	7	
45	2820	2680	520	380	620	480	820	680	
60	3000	2820	700	520	800	620	1000	820	
110	3400	3250	1100	950	1200	1050	1400	1250	
150	3850	3650	1550	1350	1650	1450	1850	1650	
220	4500	4150	2200	1850	2300	1950	2500	2150	


Окончание таблицы 6

Размеры в миллиметрах

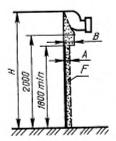
Номинальное	Горизонтальные расстояния между частями под напряжением и наружными ограждениями (см. рисунок 1)								
напряжение $U_{\text{ном}}$, кВ		D граждений* высотой нее 1800	Е Для сеток или ограждений с экраном высото ис менес 1890 Установки						
	Уст	ановки							
	не защищенные от перенапряжения D= N+1000	защищенные от веренапряжений или присоединенные к кабелям D=S+1000	не защищенные от перенапряжений E = N+1000	защищенные от пере- няпряжений или присоединенные к кабелям E=S+1500					
3									
6	1150	1150	1650	1650					
10									
20	1215	1100	1720	1660					
30	1325	1270	1825	1770					
45	1520	1380	2020	1800					
60	1700	1520	2200	2020					
110	2100	1950	2600	2450					
150	2550	2350	3050	2850					
220	3200	2850	3700	3350					

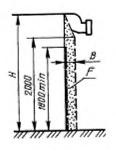

м — минимальное расстояние, указанное в таблице 2, для установок, подвергающихся перенапряжениям.

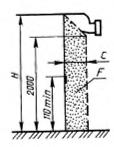
^{**} Для цепей или канатов горизонтальные расстояния должны увеличиваться на провес.

H' — минимальное расстояние для силовых воздушных линий; E — необходимые минимальные расстояния, указанные в габлице 6; N_e S — см. таблящу 6; F — зона, в которой не должны находиться части под напряжением

Рисунок 1 — Расстояния между частями под напряжением и наружным ограждением

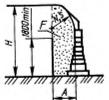


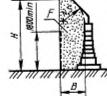

Н — минимальное расстояние между частями под напряжением над доступной зоной, указанное в таблице 6. Расстояние может быть увеличено, чтобы учесть условия, указанные в 7.1 и 7.3

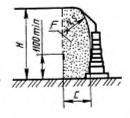

Рисунок 2 — Минимальная высота частей под напряжением над доступными поверхностями в наружных установках

S — минимальное расстояние, указанное в таблице 2, для установок, защищенных от перенапряжений или присоединенных к кабелям.

Для сплошных барьеров и заграждений горизонтальные расстояния должны измеряться от ближайшей поверхности частей под напряжением.






- а) жесткое ограждение
- b) сетка или экран
- с) ограждение с поручнями, цепями или качатом

H — минимальное расстояние между частями, находящимися под напряжением иад доступной поперхностью, указанное в таблице 6. При необходимости увеличения расстояния следует учитывать условия, указанные в 7.1 и 7.3; A,B и C — минимальные расстояния, указанные в таблице 6; F — тона, в которой не должны находилься части под напряжением.

Рисунок 3 — Расстояния между частями, находящимися под напряжением для наружных установок с номинальным напряжением до 30 кВ включ.

- а) жесткое ограждение
- b) сетка или экран
- с) ограждение с поручнями, цепями или канатом

H — минимальное расстояние между частями, находящимися под напряжением над доступной поверхностью, указанное в таблице 6. При необходимости увеличения расстояний следует учитывать условия, указанные в 7.1 и 7.3; A, B и C — минимальные расстояния, указанные в таблице 6; N, S — см. таблицу 6; F — зона, в которой не должны находиться части под напряжением

Рисунок 4 — Расстояния между частями, находящимися под напряжением для наружных установок с номинальным напряжением св. 30 кВ

7.3 Минимальные расстояния в зонах, доступных для персонала

Внутри зон, доступных для персонала, таких как проходы, площадки и другие поверхности, на которых персонал может находиться в нормальном рабочем положении, неизолированные проводники под напряжением должны прокладываться:

- а) выше рассматриваемой поверхности на высоте, указанной в таблице 6;
- в) за перегородками, ограничивающими доступ персонала к частям под напряжением согласно 7.4.

В зонах, где предполагается большое количество снега, расстояния, предписанные в подпункте
 а), должны увеличиваться на толщину предполагаемого скопления снега.

Примечание — Рисунок 2 иллюстрирует требования подпункта а).

7.4 Минимальные расстояния до ограждений

Когда неизолированные части под напряжением в пределах ограждений находятся на высоте, меньшей минимальной, предписанной в 7.3a, то необходимо установить ограждения, ограничиваю-

щие доступ персонала к таким частям под напряжением. Тип, высота и расположение ограждения должны быть такими, чтобы части под напряжением находились вне зоны, показанной на рисунках 3, 4 и в таблице 6. В любом случае высота ограждений не должна быть ниже 1100 мм.

Глава II. ЗАЩИТА ОТ КОСВЕННОГО ПРИКОСНОВЕНИЯ— ПЕРЕМЕННЫЙ ТОК (ЗАЩИТА ОТ ПОРАЖЕНИЯ ЭЛЕКТРИЧЕСКИМ ТОКОМ ПРИ ПОВРЕЖДЕНИИ)

Вводная часть

Защитные меры направлены на предотвращение поражения электрическим током при прикосновении (в условиях возникшего повреждения) такой продолжительности, при которой возникает опасность поражения персонала или животных.

Эти меры были выработаны на практике с учетом возможности косвенного прикосновения персонала или животных и вида поврежденной электроустановки.

При повреждении заземления защиту обеспечивают автоматическим отключением питания при определенном напряжении и времени или ограничением напряжения при косвенном прикосновении до нормируемого напряжения, при котором не требуется отключение питания.

В этой главе описаны защитные меры от косвенного прикосновения с защитным проводником для всех электроустановок напряжением до 1000 В включ. и св. 1000 В.

Дополнения, учитывающие потребности народного хозяйства, в тексте настоящей главы выделены курсивом.

8 Общие требования

Все открытые проводящие части дояжны быть соединены с защитным проводником.

Заземляемые точки энергосистемы, если они заземлены, должны быть соединены с заземлителем ближайшего силового трансформатора или генератора.

Если требуется, чтобы защитный проводник был заземлен отдельно, соединение с заземлением должно быть удалено от заземлителя системы питания. Если имеются удобные для присоединения заземляющие устройства или точки, то желательно, чтобы защитный проводник был соединен с ними как можно чаще.

Многократное заземление в точках, расположенных как можно более равномерно, может понадобиться для того, чтобы потенциал защитного проводника оставался возможно более близким по значению к потенциалу заземления в случае повреждения.

Защитный проводник может быть оголенным, т. е. без изолирующего покрытия,

8.2 Защитное устройство автоматически отключает питание от той части электрического оборудования, которую оно защищает, если обусловленное повреждением напряжение прикосновения не может поддерживаться в любой точке на уровне, равном или меньшем нормированного напряжения U_L , где $U_L^* = 50$ В (действующее значение).

П р и м е ч а н и е — При определенных энергосистемах IT (разд. 12) автоматическое отключение может не потребоваться при возникновении повреждения.

- 8.3 Характеристики** защитных устройств или защитных мер должны соответствовать:
- для напряжений до 1000 В включ. таблице 7 и рисунку 5,
- іі) для напряжений св. 1000 В таблице 8 и рисунку 6.

П р и м е ч а н и е — Допускается устанавливать значения характеристик в соответствии с отраслевыми правилами и нормативами по безопасности эксплуатации электрооборудования, утвержденными в установленном порядке.

56

^{*} В случае необходимости допускается принимать более низкое нормированное напряжение, например для влажной и токопроводящей среды

^{**} В случаях, когда при генерировании, распределении и подаче энергии возникает небольшая вероятность появления опасности, допускаются значения больше тех, которые указаны в таблицах 7 и 8.

Таблица7 — Энергосистемы напряжением до 1000 В включ.

Предполагаемое напряжение прикосновения (переменный ток — действующее значение). В	Максимальное время срабатывания, с
До 50	60
50	5,00
75	1,00
90	0,50
110	0,20
150	0,10
220	0,05
280	0,03

Таблица8 — Энергосистемы напряжением св. 1000 В

Предполагаемое напряже- ние прикосновения (пере- менный ток — действующее значение). В	Максимальное время срабатывания, с
До 50	60
80	5,00
120	1,00
150	0,50
180	0,40
300	0,10
420	0,05
550	0,03

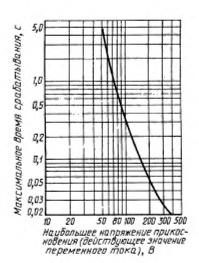
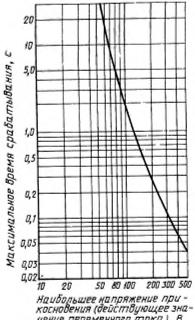



Рисунок 5 - Графическое представление данных, приведенных в таблице 7

Наибольшее напряжение при -косновения (действующее зна-чение переменного тока), В

Рисунок 6 — Графическое представление данных, приведенных в таблице 8

- 8.4 Защита без защитного проводника должна выполняться одним из следующих способов:
- при помощи дополнительной или усиленной изоляции;
- при помощи непроводящих сред;
- электрическим разделением.
- 8.5 В отдельных установках (например, в системах энергопитания двигателей), рассчитанных на напряжение до 1000 В включ., где возможно сделать четкое и постоянное различие между:
- а) частями установки, которые обеспечивают питание только оборудования, установленного стационарно;
- в) частями, предназначенными для обеспечения питания портативных и передвижных аппаратов, имеющих открытые токопроводящие части, которые можно держать в руке.

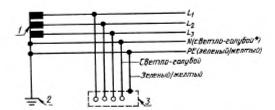
Время отключения для стационарных установок не должно превышать 5 с.

- П р и м е ч а н и е «Четкое различие» означает, что повреждение в стационарном оборудовании не влияет на безопасность переносной или подвижной аппаратуры, к которой относится время отключения, указанное в таблице 7.
- 8.6 Для отключения повреждения в энергосистемах напряжением св. 1000 В время отключения ограничивают, так как за это время в особых условиях могут возникать повышенные напряжения прикосновения. В таких случаях отключение должно производиться за минимально возможное время.
 - 8.7 Защитные меры требуют согласования:
 - типа системы питания относительно заземления (раздел 9);
 - характеристик защитных устройств.

9 Описание энергосистем TN, ТТ и IT

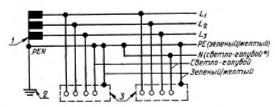
9.1 Общие требования

Обозначения, используемые в описании энергосистем, имеют следующее значение:


- первая буква связь точки заземления энергосистем с землей.
- П р и м е ч а н и е В трехфазной энергосистеме заземляемой точкой обычно является точка заземления генератора или трансформатора:
- Т электрическое соединение точки заземления генератора или трансформатора (минимальное практическое сопротивление) с землей.
- I отсутствие соединения (все части, находящиеся под напряжением, изолированы от земли) или соединение с землей через сопротивление (активное сопротивление или реактор) или равнозначную цепь;
 - вторая буква связь открытых проводящих частей электрической установки с заземлением:
- Т прямое электрическое соединение точки заземления генератора или трансформатора (минимальное практическое сопротивление) с заземлением, независимо от любой связи с точкой заземления энергосистемы,
- N прямое электрическое соединение (минимальное практическое сопротивление) с точкой заземления энергосистемы.

Если характеристики системы заземления питания электрической установки неизвестны, их нужно установить с учетом типа источника питания.

9.2 Описание энергосистем


Энергосистемы подразделяют на несколько типов в зависимости от системы заземления.

- а) Энергосистема TN (рисунки 7-9)
- Энергосистемы, в которых точку заземления непосредственно подсоединяют к земле, причем оголенные токопроводящие части электрической установки подсоединяют посредством защитных проводников к точке заземления этой энергосистемы.
 - b) Энергосистема ТТ (рисунок 10)
- Энергосистема имеет точку заземления, соединенную непосредственно с заземлением, открытые проводящие части установки соединены с заземлителями, которые электрически независимы от заземлителя энергосистемы.
 - с) Энергосистема ІТ (рисунки 11—13)

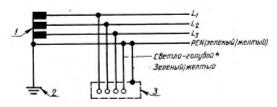

I— точка заземления энергосистемы; 2— земля, 3— открытые проводящие части; L_1, L_2, L_3 — фазные проводники энергосистемы; N— нулевой проводник; PE— защитный проводник

Рисунок 7 — Энергосистема TN с отдельным нулевым проводником и защитными проводниками в энергосистеме

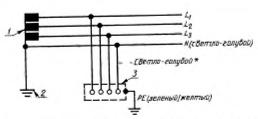

I — точка заземления энергосистемы; 2 — земля; 3 — открытые проводящие части; $L_1,\,L_2,\,L_3$ — фазные проводники энергосистемы; N — нулевой проводник; PE — защитный проводник

Рисунок 8 — Энергосистема TN с нулевым проводником и защитными функциями, объединенными в один проводник в каждой части энергосистемы

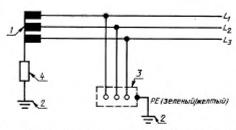

I — точка заземления энергосистемы; 2 — земля; 3 — от-крытые проводящие части; L_1, L_2, L_3 — фазные проводники энергосистемы; PEN — проводник

Рисунок 9 — Энергосистема TN с нулевым проводником и защитными функциями, объединенными в один проводник во всей энергосистеме

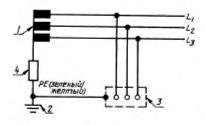
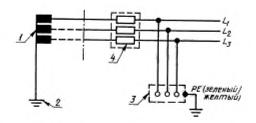

I— точка заземления энергосистемы; 2— земля; 3— открытые проводящие части; L_1, L_2, L_3 — фазиме проводники энергосистемы; PE— защитный проводник; N— нулевый проводник

Рисунок 10 — Энергосистема TT

I- гочка заземления энергосистемы; 2- земля; 3- открытые проводящие части; 4- заземляющее сопротивление (резистор или реактор); $L_1,\ L_2,\ L_3-$ фазные проводники энергосистемы; PE- задщитныя проводник


Рисунок 1I — Энергосистема IT с независимыми заземлителями

I— точка заземления энергосистемы; 2— темля; 3— открытые проводящие части, 4— заземляющее сопротивление (резистор или реактор); L_1, L_2, L_3 — фазные проводники энергосистемы; PE— защитный проводник

Рисунок 12 — Энергосистема IT с общим заземлителем

^{*} Рекомендуемый цвет (см. пункт 10.6).

I — точка заземления энергосистемы; 2 — земля; 3 — открытые проводящие части; 4 — реактор ограничения тока нулевой последовательности; L_1 , L_2 , L_3 — фазиме проводники энергосистемы; PE — защитный проводник

Рисунок 13 — Энергосистема IT, в которой внешняя энергосистема TT или TN использована в качестве источника

Энергосистема имеет точку заземления, не связанную с заземлением или соединенную с заземлением через сопротивление (активное сопротивление или реактор); открытые проводящие части установки соединены с заземлителями, которые могут быть такими же, как и применяемые для активного сопротивления или реактивной катушки.

Энергосистемы, получающие питание от других систем (ТТ или TN) через трехфазный реактор (реактор нулевой последовательности), имеют высокое сопротивление к токам утечки на землю (нулевой последовательности) со смещением нейтрали (см. 13.3).

10 Защитные меры для энергосистем TN

В энергосистемах ТN точка заземления (в трехфазных сетях обычно нулевая точка энергосистемы) и открытые проводящие части соединены защитным проводником. При коротком замыкании между фазным проводником и защитным проводником или открытыми проводящими частями ток нулевой последовательности через защитное устройство вызывает отключение питания от неисправного оборудования.

Чтобы в случае повреждения (на открытых проводящих частях и на заземлении) потенциал защитного проводника и открытых проводящих частей, соединенных с ним, мало отличался от потенциала заземления, защитный проводник должен быть соединен с несколькими точками заземления, распределенными так, чтобы получить возможно меньшее заземляющее сопротивление. В случае повреждения изоляции между фазным проводником и незащищенной проводящей частью напряжение прикосновения должно быть ограничено, как указано в разделе 8.

10.1 Соединение открытых проводящих частей

Все открытые проводящие части электрической установки должны быть соединены с точкой заземления энергосистемы при помощи защитных проводников.

10.2 Отключение после повреждения

Защитные устройства и поперечное сечение проводников должны выбираться так, чтобы при возникновении короткого замыкания в дюбой точке между фазным и защитным проводниками или открытой проводящей частью, соединенной с ними, отключение происходило на нормируемое время.

Этого достигают выполнением следующего соотношения

$$Z_x I_{a1} \leq U_0$$
,

где Z_i — сопротивление контура тока короткого замыкания, Ом;

 I_{a1} — ток срабатывания отключающего устройства в течение 5 с в установках, указанных в 8.5, или за время, указанное в таблице 7 или 8, А;

 U_0 — фазное напряжение, В.

Примечания

- 1 $\dot{\text{B}}$ контактной установке Z_s может быть подсчитано или измерено.
- Предполагаемое напряжение прикосновения зависит от напряжения энергосистемы и от соотношения между сопротивлением защитной цепи и суммы сопротивления фазного проводника и источника.

Если указанное соотношение не может быть выполнено, следует обеспечить дополнительное соединение в соответствии с требованиями 14.8.2.

10.3 Одиночный проводник, объединяющий функции защитного и нулевого проводников

Если позволяют действующие правила, одиночный проводник может объединять функции защитного и нулевого проводников, при этом следует соблюдать следующие условия:

- в стационарной электрической установке проводник должен быть жестким;
- площадь поперечного сечения проводника должна быть не менее 10 мм².

В случаях, когда проводник оголен, т. е. отсутствует изоляция, может возникнуть необходимость изолировать проводник не для защиты от косвенного прикосновения, а по другим причинам, например при угрозе искры.

10.4 Отключение комбинированного защитного и нулевого проводников

Защитный проводник не должен отключаться при работе. Применение защитных устройств, действующих на сверхтоках, возможно при объединении функций защитного и нулевого проводников только тогда, когда отключаются и фазные проводники.

10.5 Электрическое отделение защитного проводника от комбинированного защитного и нулевого проводников

Если нулевой и защитный проводники электрически отделены в любой точке электрической установки, то нельзя соединять эти два проводника друг с другом от той же точки, которая идет по направлению к нагрузке.

Нулевой проводник должен быть изолирован и проложен так же, как фазный проводник.

10.6 Обозначения проводников

а) Защитный проводник

Защитный проводник должен быть зеленого/желтого цвета согласно цветоводу коду.

b) Комбинированный проводник

Комбинированный проводник должен быть того же цвета, что и защитный проводник — зеленый/желтый. Концы должны быть обозначены так же, чтобы показать объединенное назначение нейтрали.

с) Нулевой проводник

Если нулевой проводник не имеет другого назначения, его рекомендуется обозначить светлоголубым цветом.

10.7 Защитные устройства

Рекомендуется применение защитных устройств, действующих на сверхтоках и на токе нулевой последовательности.

Если нулевой и защитный проводники объединены соответственно требованиям 10.3, защиту обеспечивают только защитными устройствами, действующими на сверхтоках.

10.8 Защитные устройства, действующие на токе нулевой последовательности

При использовании защитных устройств, действующих на токе нулевой последовательности, соединять открытые проводящие части с защитным проводником не требуется. Их соединяют с заземлителем, сопротивление которого подобрано соответственно рабочему току защитного устройства, действующего на нулевой последовательности, В этом случае цепь, защищенную этим защитным устройством, действующим на токе нулевой последовательности, считают энергосистемой ТТ, и к ней нужно применять условия раздела 11.

В случае, если нет отдельного заземлителя, открытые проводящие части с защитным проводником должны быть соединены со стороны источника защитного устройства, действующего на токе нулевой последовательности.

10.9 Баланс напряжения

В некоторых случаях для энергосистем TN напряжением до 1000 В включ., в которых может возникнуть непосредственное замыкание между фазным проводником и заземлением (например, системы надземных линий), должно выполняться условие, при котором напряжение относительно земли не должно превышать U_L

$$\frac{R_B}{R_L} \leq \frac{U_L}{U_0 - U_L} \,,$$

где R_B — общее сопротивление заземления, Ом;

 R_E — предполагаемое наименьшее сопротивление контакта заземления проводящих частей, не соединенных с защитным проводником, при появлении контакта между землей и фазными проводниками, Ом;

 U_0 — фазное напряжение, В;

 U_{L} — нормированное напряжение, В.

Рекомендуются следующие меры защиты:

- опора, соединенная с защитным проводником под надземной линией;
- конструктивные части, соединенные с защитным проводником.

11 Защитные меры для энергосистем ТТ

В энергосистемах ТТ точка заземления (нулевая) соединена непосредственно с заземлителем без сопротивления (не включая сопротивление защитного проводника), соединяющего точку заземления с заземлителем.

Открытые проводящие части присоединены либо индивидуально, либо группами или все вместе к одному или нескольким заземлителям независимо от точки заземления заземлителя.

В системах, полностью установленных в передвижной или подвижной аппаратуре, металлическая конструкция образует заземлитель, и точка заземления будет соединяться с металлической конструкпией.

В случае короткого замыкания между фазным проводником и открытой проводящей частью напряжение прикосновения должно быть ограничено в соответствии с требованиями раздела 8.

11.1 Изоляция и прокладка нулевого проводника

Нулевой проводник, если он есть, должен быть изолирован и проложен так же, как фазный проводник.

11.2 Соединение открытых проводящих частей

Все открытые проволящие части электрического оборудования, защищенные общим защитным устройством, должны быть взаимосвязаны и соединены защитным проводником с общим заземлителем. Если несколько защитных устройств применяют последовательно, тогда это требование относится к каждой группе открытых проводящих частей, защищенных одним устройством.

Открытые проводящие части, которые одновременно доступны, должны быть соединены с обшим заземлителем.

11.3 Условия, которые должны быть обеспечены при утечке

В соответствии с требованиями 8.3 необходимо выполнить следующее условие

$$I_{\alpha}R_{A} \leq U$$

где I_a — ток срабатывания отключающего устройства в течение времени для предполагаемого напряжения прикосновения — кривая максимального рабочего времени. Если применяют устройство, работающее на токе нулевой последовательности, то I_a равен номинальному току нулевой последовательности $I_{\Delta n}$, A;

U — нормированное напряжение (U_L) или предполагаемое напряжение прикосновения, B;

 R_4 — сопротивление заземлителя открытых проводящих частей, Ом.

Если это условие не выполняется, то нужно установить дополнительное выравнивание потенциалов в соответствии с 14.8.2.

11.4 Защитные устройства

Рекомендуется применение защитных устройств, действующих:

- на токе нулевой последовательности;
- на сверхтоке.

Применение устройств, действующих при напряжении повреждения, не исключается для систем с напряжением до 1000 В включ.

12 Защитные меры для энергосистем IT

В энергосистемах IT точка заземления системы питания изолирована от заземления или заземлена через сопротивление, а открытые проводящие части соединены с одним или несколькими заземлителями индивидуально, группами или все вместе. Отключение источника питания может не потребовать-

ся, если ток повреждения при единичном повреждении на открытые проводящие части достаточно низкий и не превышает нормированное напряжение U_L . Нужно принять меры, исключающие два одновременных замыкания на землю (фаза—земля—фаза).

Энергосистема, которая питается от энергосистемы TN или TT через реактор нулевой последовательности, ограничивающий ток повреждения на землю (реактивная катушка нулевой последовательности фаз) до малого значения, соответствует требованиям к энергосистеме IT.

Там, где смещение нейтрали достигается применением устройств, ограничивающих ток утечки на землю, то такие устройства должны отвечать требованиям раздела 13.

12.1 Изоляция или заземление точки заземления энергосистемы

Точка заземления может быть изолирована от земли или заземлена через сопротивление (в таких случаях именно нулевая точка соединена с землей через сопротивление).

Допускаются и искусственные точки заземления.

Примечания и е- Такие заземления бывают необходимы для уменьшения перенапряжения или колебания напряжения.

12.2 Прокладка и изоляция нулевого проводника

Нулевой проводник, если он есть, должен быть изолирован и проложен так же, как и фазный проводник. Не рекомендуется использовать нулевой проводник для соединения нагрузок.

12.3 Соединение открытых проводящих частей

Все открытые проводящие части должны быть заземлены индивидуально, группами или все вместе. Они могут быть соединены прямо с заземлением (рисунки 11 и 12).

Общее сопротивление заземления R_A всех открытых проводящих частей, соединенных защитным проводником с заземлителем, должно отвечать следующему требованию

$$I_{d}R_{A} \leq U_{L}$$

где I_d — ток повреждения при первом непосредственном замыкании между фазным проводником и открытой проводящей частью, А. Величину I_d учитывают при расчете тока утечки и общего заземляющего сопротивления электроустановки;

 U_L — нормированное напряжение прикосновения, В.

12.4 Работа защитных устройств в условиях повреждения

а) При возникновении первого повреждения

Если предполагаемое напряжение прикосновения (12.3) превышает U_L (8.2), то защитное устройство должно отключить питание цепи в соответствии с требованиями 8.3.

Если предполагаемое напряжение прикосновения не превышает U_L (8.2), работа может продолжаться при следующих условиях:

- і) защитные меры должны предусматривать разъединение в случае последующего повреждения (фаза—земля—фаза) в соответствии с требованиями подпункта b):
- іі) устройство контроля изоляции и другое аналогичное защитное устройство регистрирует появление повреждения изоляции электрической установки, находящейся под напряжением, на открытые проводящие части или на землю (исключение — см. подпункт b);

Это устройство должно давать звуковой и (или) визуальный сигнал, чтобы можно было немедленно устранить неисправность.

Рекомендуется, чтобы устройство или серия устройств определяли место повреждения достаточно точно для обеспечения отключения поврежденной части цепи;

ііі) при продолжении работ в условиях по подпункту а) следует учитывать опасность возникновения пожара, а также требования действующих стандартов. При работе подвижного механизма с системой питания, как показано на рисунке 12, рекомендуется, чтобы работа прекращалась как можно быстрее или практически сразу после возникновения первого повреждения.

б) При возникновении последующих повреждений (фаза—земля—фаза)

При возникновении первого повреждения на землю должна быть такая защита, которая обеспечивала бы отключение питания в случае второго замыкания. Условия защиты и срабатывания определены для энергосистемы TN или TT в зависимости от того, соединены ли все открытые проводящие части защитным проводником или нет.

Настоятельно рекомендуется применение устройства контроля изоляции.

12.5 Защитные устройства

Рекомендуется применение следующих защитных устройств:

контроля изоляции;

- работающих на сверхтоке;
- работающих на токе нулевой последовательности;
- работающих на напряжении нулевой последовательности (только для специального применения).

13 Требования к устройствам, ограничивающим ток утечки на землю

Для энергосистем IT, в которых для снижения тока утечки на землю применяют устройства, использующие смещение нейтрали в системе, допускаются следующие ограничения токов замыкания на землю: до 1000 В включ. — 10, 15, 25 А; св. 1000 В — 10, 15, 25, 50 А.

Номинальное напряжение этих устройств должно быть линейным напряжением энергосистемы.

П р и м е ч а н и е — Циклическая нагрузка и другие номинальные требования находятся на стадии рассмотрения.

13.1 Сопротивления резистора заземления нулевой точки

Специальные требования находятся на стадии рассмотрения.

13.2 Реакторы заземления нейтрали и дугогасящие катушки

Реакторы могут применяться либо для ограничения тока замыкания на землю, либо в качестве катушек дугогашения, компенсирующих емкостный ток, и в случае однофазного замыкания фаза земля в системе.

В таких катушках дугогашения может предусматриваться отдельная обмотка для соединения с резистором.

13.3 Трехфазные реакторы нулевой последовательности, ограничивающие ток утечки на землю (реактор нулевой последовательности фаз)

Реакторы тока нулевой последовательности, ограничивающие ток повреждения на землю, предназначены для подключения комплектно в трехфазную энергосистему; точку заземления (в этом случае нулевую точку) заземляют, обеспечивая низкое сопротивление току нагрузки и высокое сопротивление токам нулевой последовательности для того, чтобы ограничить до заданного значения величину тока, который может возникнуть при однофазном повреждении на землю.

Обычно реакторы этого типа применяют только в системах с напряжением св. 1000 В.

Такие реакторы могут применяться вместо изолирующего трансформатора для ограничения токов повреждения на землю.

Рекомендуемые величины ограничения тока утечки на землю для таких реакторов идентичны величинам токов замыкания на землю, приведенных в настоящем разделе.

14 Заземляющие устройства и защитные проводники

14.1 Общие требования

- 14.1.1 Заземляющие устройства должны удовлетворять требованиям безопасности и функциональным требованиям, предъявляемым к электрическим установкам и их оборудованию. Заземляющие устройства могут применяться совместно или отдельно в целях защиты или работы согласно требованиям, предъявляемым к этим установкам.
- 14.1.2 Заземляющие устройства должны включать заземлители, защитные проводники и другие компоненты, необходимые для выполнения требования настоящего стандарта.

Примечания

- 1 Схема элементов типичных заземляющих устройств приведена на рисунке 14. Не все приводимые элементы должны присутствовать в каждом заземляющем устройстве. В некоторых установках могут потребоваться дополнительные элементы, а некоторые элементы могут иметь комбинированную функцию.
- 2 В этом подпункте не содержатся требования, предъявляемые к отдельным заземляющим устройствам или защитным проводникам, если они могут быть выполнены другими средствами.

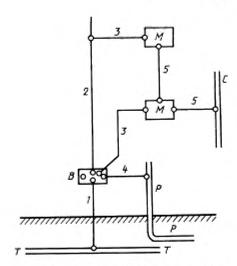
- 14.1.3 Конструкция, выбор и установка заземляющих устройств должны быть такими, чтобы:
- а) выполнялись требования к защите от косвенного прикосновения, приведенные в главе II;
- выполнялись технические требования для нормальной работы защитных устройств;
- с) заземлители и защитные проводники конструировались и устанавливались таким образом, чтобы требования к защите и функционированию удовлетворялись в ожидаемых в процессе эксплуатации условиях;
- d) токи утечки на землю (включая токи результирующие от повреждения фаза—земля—фаза в случае применения систем IT) могли бы проходить безопасно особенно при термических, термомеханических и электромеханических перегрузках;
- е) обеспечивалась достаточная прочность и дополнительная механическая защита, соответствующая условиям внешних воздействий;

 f) сопротивление заземления соответствовало защитным и функциональным требованиям установки и было бы постоянно эффективным.

14.1.4 Для исключения возможности повреждения металлических частей в результате электролиза должны быть приняты меры предосторожности.

14.2 Заземлители

14.2.1 Применяют следующие типы заземлителей:


- стержень(и) или труба(ы);
- лента(ы) или провод(а);
- пластина(ы) или сетка(и);
- электрод(ы), заделанный(е) в фундамент;
- металлическое армирование бетона;
- другие подходящие подземные структуры.

Должны быть применены один или более заземлителей в зависимости от почвенных условий и требуемого сопротивления заземления.

При применении передвижного или подвижного оборудования его металлоконструкции могут использоваться в качестве заземлителей для энергосистем, изолированных от внешних источников питания, или энергосистем с автономным питанием.

Примечания

- 1 Эффективность любого заземлителя зависит от местных почвенных условий. Если условия препятствуют удовлетворительному электрическому контакту, наилучший эффект дает применение таких технических приемов, как измельчение почвы и (или) добавление химических наполнителей.
 - 2 В некоторых случаях требуются отдельные заземляющие устройства (см. 14.5).
- 14.2.2 Материалы и общая площадь поперечного сечения заземлителя должны обеспечивать проводимость не меньшую, чем у заземляющего проводника согласно 14.3.1.
- 14.2.3 Тип и глубина, на которую опускают заземлитель, должны быть такими, чтобы высыхание и замерзание почвы не увеличивали сопротивления заземления заземлителей выше допустимой величины. Так, где это неосуществимо, заземлители опускают ниже постоянного уровня грунтовых вод, кроме заземлителей, используемых для контроля разности потенциалов.
- 14.2.4 При проектировании заземлителей нужно учитывать как тип, температуру и содержание влаги в почве, так и величину и продолжительность ожидаемого тока, чтобы предотвратить высыхание почвы вблизи заземлителей.
- 14.2.5 При проектировании, выборе материалов и конструкции заземлителей нужно учитывать возможный износ и увеличение их сопротивления, происходящие в результате коррозии при более длительном, чем предполагалось, использовании установки.

I — заземляющий проводник; 2 — основной защитный проводник; 3 — защитный проводник; 4 — основной проводник выравнивания потенциалов; 5 — вспомотатедьный проводник выравнивания потенциалов; T — заземлитель; B — клемма заземления главная; M — открытая проводящая часть; C — сторонняя проводящая часть; P — магистральный водопровод

Рисунок 14 — Элементы типичного заземляющего устройства

- 14.2.6 Сопротивление заземления должно измеряться при начальной установке заземлителя и периодически после его установки.
- 14.2.7 Металлические водопроводные и другие системы (например, газопровод, отопительная система) не должны использоваться в качестве заземлителей в защитных и функциональных целях.
- Π р и м е ч а н и е Это требование не исключает применение объединений металлических трубопроводов для выравнивания потенциалов.
- 14.2.8 Свинцовые и другие металлические покрытия кабелей не должны применяться в качестве заземлителей в защитных и функциональных целях.

14.3 Заземляющие проводники

14.3.1 Каждый заземляющий проводник должен иметь площадь поперечного сечения не меньше указанной в 14.6.2; она не должна быть меньше значений, приведенных в таблице 9.

Т а б л и ц а 9 — Минимальные размеры заземляющих проводников

Вид заземляющего проводника	Минимальная площадь поперечного сечения проводника, мм ²					
	механически защищенного	механически незащищенного				
Защищенный от коррозии	Согласно 14.6.2	16 — для меди и материалов, со- держащих железо				
Незащищенный от коррозии	25 — для меди, 50 — для стали					

14.3.2 Соединение заземляющего проводника с заземлителем должно быть прочным и обеспечивать удовлетворительную проводимость. Если применяют зажим, то он не должен повреждать заземлитель (например, трубу) или заземляющий проводник.

Соединения между заземляющими проводниками и заземлителями должны быть защищены от механического повреждения и коррозии.

 Π р и м е ч а н и е — В некоторых установках необходимо использовать более одного заземлителя, и в этом случае желательно, чтобы к точкам соединения с заземлителями имелся доступ для контроля.

14.4 Главные клеммы заземления или стержни

- 14.4.1 Рекомендуется, чтобы одна или несколько главных клемм заземления или шин имели приспособления для подключения:
 - защитных проводников;
 - основных проводников выравнивания потенциалов;
- при необходимости функциональных заземляющих проводников, а также для их соединения с заземляющим проводником.
- 14.4.2 Должны быть обеспечены средства для отсоединения защитного проводника в доступном месте. Такие средства могут быть объединены с главной клеммой заземления или стержнем для измерения сопротивления заземляющих устройств. Это соединение должно разъединяться только с помощью инструмента, быть механически прочным и иметь надежное обслуживание.
- 14.5 Требования, определяющие связь с заземляющими устройствами других систем, должны устанавливаться в зависимости от конкретных условий эксплуатации энергосистем.

14.6 Защитные проводники

14.6.1 Типы защитных проводников

Защитными проводниками могут быть:

- проводники в многожильных кабелях;
- изолированные или неизолированные проводники в общей с фазными проводниками оболочке;
 - отдельные незащищенные или изолированные проводники;
- металлические покрытия для проводников или кабелей, например оболочки, экраны или броня;
 - соответствующие металлические оболочки для проводников;
- соответствующие конструктивные элементы, разрешенные действующими государственными стандартами, и другие способы, удовлетворяющие условиям эксплуатации.
 - 14.6.2 Минимальная площадь поперечного сечения

14.6.2.1 Основные требования

Площадь поперечного сечения защитного проводника должна быть такой, чтобы:

- а) проводник был термически устойчив при аварийных токах (см. 14.6.2,2);
- в) проводник имел соответствующую механическую прочность для обеспечения целостности в ожидаемых условиях (см. 14.6.2.3).

Кроме того, защитный проводник как элемент заземляющего устройства должен удовлетворять сам или в соединении с другими элементами заземляющего устройства другим требованиям гл. II.

14.6.2.2 Минимальная площадь поперечного сечения проводника в зависимости от термических условий

Площадь поперечного сечения защитного проводника должна быть рассчитана или выбрана в соответствии с описанной ниже методикой.

а) Методика расчета

Площадь поперечного сечения должна быть не менее определяемой по формуле (только для времени отключения менее 5 c)

$$A = \frac{k_1 \sqrt{I^2 t}}{k},$$

- где A площадь поперечного сечения, мм²;
 - I величина (действующее значение временного тока) тока утечки при наименьшем полном сопротивлении изоляции, который может протекать через защитное устройство, А;
 - время срабатывания отключающего устройства, с.

 Π р и м е ч а н и е — Следует учитывать токоограничивающее действие полного сопротивления цепи и ограничивающую способность (I^2t) защитного устройства;

- k коэффициент, зависящий от материала защитного проводника, его изоляции и других частей, а также от начальной и конечной температуры;
- k_1 коэффициент, при расчете которого принимают во внимание действие ассимметричных токов утечки при быстродействующем отключении. Рекомендуется принимать $k_1 = 1$ для времени отключения 0.2 с или $k_1 > 1.3$ для времени отключения менее 0.2 с.

Значения коэффициента выбирают по приложению А.

Если расчеты по этой формуле дают нестандартные размеры, то следует применять проводники с большей стандартной площадью поперечного сечения.

b) Методика выбора

Площадь поперечного сечения защитного проводника должна быть не менее указаниой в таблице 10. Если, исходя из таблицы, получают нестандартные результаты, то применяют проводники с большей стандартной площадью поперечного сечения.

Если площадь поперечного сечения защитного проводника определяют согласно указанной выше методике, то проверка соответствия подпункта a) необязательна.

Значения, указанные в таблице 10, действительны только в случае, если защитный проводник из того же металла, что и фазные проводники. В противном случае площадь поперечного сечения защитного проводника должна выбираться так, чтобы проводимость его была эквивалентна проводимости сечений, указанных в таблице 10.

Т а б л и ц а 10 — Выбор минимальной площади поперечного сечения защитных проводников

Площадь поперечного сечения Φ азных проводников установки A_p	Минимальная площадь попе- речного сечения соответствую- щего защитного проводника А
<i>A</i> _p ≤16	A_{ρ}
16 <a<sub>p≤35</a<sub>	16
A _a >3	A_/2

14.6.2.3 Минимальная площадь поперечного сечения проводника в зависимости от механической прочности

Независимо от определенной в 14.6.2.2 плошади поперечного сечения проводника для обеспечения его механической прочности, она не должна быть менее величины, указанной в подпункте а). В этом пункте рассматривают площади поперечного сечения медных проводников. При применении других проводящих материалов должна обеспечиваться аналогичная прочность.

а) Отдельно проложенные защитные проводники

Площадь поперечного сечения защитного проводника, который не является жилой кабеля или частью оболочки кабеля, должна быть не менее:

- 2,5 мм² при наличии механической защиты;
- 4,0 мм² при отсутствии механической защиты.
- в) Защитные проводники, проложенные с фазными проводниками

Если защитный проводник проложен в том же кабеле, трубопроводе, оболочке или другом защитном устройстве, что и фазный проводник сечением не более 2,5 мм², то площадь поперечного сечения защитного проводника должна быть такой же.

с) Защитные проводники высоковольтных установок

Если фазные проводники включены на напряжение св. 1000 В, площадь поперечного сечения соответствующего взаимосвязанного защитного проводника должна быть не менее 16 мм².

воздушные и подвесные защитные проводники

Площадь поперечного сечения воздушных и подвесных защитных проводников должна быть не менее площади, указанной в таблице 11, в зависимости от длины пролета и типа проводника. В условиях сильного обледенения и ветра могут потребоваться проводники большего поперечного сечения.

Таблица 11 — Минимальная площадь поперечного сечения воздушных и подвесных защитных проводников

Тип защитного проводника	Продет, м	Минимальная площадь поперечного сечения, мм ²
Кабели с резиновой или термопластич- ной изоляцией с отожженными провод- никами	≤10	4
Оголенные или изолированные холод- нотянутые проводники	≤25 >25≤50 >50≤75	4 6 16

- 14.6.3 Сохранение электропроводности защитных проводников
- 14.6.3.1 Защитные проводники должны быть защищены от механического и химического повреждений и электродинамических воздействий.
- 14.6.3.2 Соединения защитных проводников должны быть доступны для осмотра и контроля, кроме залитых компаундом или герметизированных соединений.
- 14.6.3.3 В защитных проводниках не должно быть отключающих устройств, кроме соединений, которые могут быть разъединены с помощью инструмента в целях контроля.
- П р и м е ч а н и е Требования по использованию отключающих устройств в общем нулевом и защитном проводнике (PEN) приведены в 10.4.
- 14.6.3.4 Если применяют самоконтроль целостности заземления, то в защитные проводники не должны включаться катушки аппаратов.
- 14.6.3.5 Рекомендуется обеспечить постоянный контроль целостности защитного проводника кабеля подвижной установки, идущего к внешнему источнику питания.
- 14.6.3.6 Незащищенные проводящие части оборудования не должны применяться в качестве части защитного проводника для другого оборудования.

14.7 Заземляющие устройства, применяемые в целях защиты

Примечание — Меры защиты заземляющих энергосистем TN, TT и IT приведены в главе II.

14.7.1 Защитные проводники в устройствах защиты от сверхтока

При использовании защитных устройств от сверхтока для защиты от косвенного прикосновения в системах переменного тока магнитный поток защитных проводников должен совпадать с магнитным потоком фазных проводников.

14.8 Выравнивание потенциалов

14.8.1 Основной способ выравнивания потенциалов

При возможности проводник основного выравнивания потенциалов должен быть установлен так, чтобы соединять постоянные проводящие части, проложенные в земле (например, основные металлические водопроводные трубы, металлические конструкции, металлическую арматуру зданий) с главной клеммой заземления или эквипотенциальной точкой (см. рисунок 14).

Проводник основного выравнивания потенциалов должен иметь допустимую токовую нагрузку, но меньшую, чем у основного защитного проводника установки. Однако для энергосистем ІТ напряжением до 1 кВ площадь поперечного сечения медного проводника не должна превышать 25 мм², а для других металлов выбирают площадь поперечного сечения, исходя из эквивалентной допустимой токовой нагрузки.

14.8.2 Дополнительное выравнивание потенциалов

14.8.2.1 Если в установке или части установки специальные условия защиты от косвенного прикосновения в случае короткого замыкания не могут быть выполнены, должна быть обеспечена местная связь, известная как дополнительное выравнивание потенциалов.

Это может быть достигнуто путем применения дополнительных проводников, дополнительных конструктивных частей или того и другого одновременно.

Дополнительное выравнивание потенциалов может включать в себя всю установку, часть установки или отдельное оборудование.

Связь металлических частей может быть необходимой в опасных местах (например, места складирования горючего) для уменьшения опасности взрыва.

14.8.2.2 Дополнительное выравнивание потенциалов должно соединять:

- открытые проводящие части, допускающие двойное прикосновение, например кожухи оборудования, общивки, открытые оболочки кабеля;
- открытые проводящие части, допускающие двойное прикосновение, для сторонних проводящих частей, например лестниц, проходов.
- 14.8.2.3 Площадь поперечного сечения проводников дополнительного выравнивания потенциалов должна соответствовать требованиям подпунктов а) или b), но не должна быть ниже соответствующего значения, указанного в таблице 12.
- а) Проводники, соединяющие две открытые проводящие части, должны иметь площадь поперечного сечения не меньше площади поперечного сечения меньшего защитного проводника, соединенного с открытыми проводящими частями.

Т а б л и ц а 12 — Минимальная площадь поперечного сечения проводников дополнительного выравнивания потенциалов.

Номинальное рабочее напряжение, В	Минимальная площадь поперечного сечения, мм ² , проводника*		
	механически защищенного	механически незащищенного	
0 <u≤1000< td=""><td>2,5</td><td>4,0</td></u≤1000<>	2,5	4,0	
U>1000	10,0	10,0	

^{*} Площади поперечного сечения, определенные в таблице, применимы к медным проводникам. Если применяют другие проводящие материалы, площадь поперечного сечения должна выбираться, исходя из эквивалентной допустимой токовой нагрузки.

- б) Проводники, соединяющие незащищенные проводящие части с другими проводящими частями, должны иметь площадь поперечного сечения не менее половины площади поперечного сечения соответствующего защитного проводника.
- 14.8.2.4 Если возникают сомнения относительно эффективности дополнительного выравнивания потенциалов, необходимо, чтобы полное сопротивление между одновременно допустимыми открытыми проводящими частями и сторонними проводящими частями удовлетворяло следующему условию

$$Z \leq \frac{U}{I_{\alpha}}$$
,

где U — предполагаемое напряжение прикосновения (см. раздел 8), B;

69

 I_a — рабочий ток защитного устройства, обеспечивающий разъединение в течение времени, указанного в таблице 7 или 8, A.

Если дополнительное выравнивание потенциалов установлено между открытыми проводящими частями оборудования, которое соединено с отдельными источниками питания, указанное выше условие должно выполняться для каждого источника питания.

При применении плавких предохранителей достаточно выполнения условия для нормированного напряжения U_L и для тока, обеспечивающего срабатывание плавкого предохранителя в пределах 5 с.

Глава III. ЗАЩИТА ОТ СВЕРХТОКА И ТОКА КОРОТКОГО ЗАМЫКАНИЯ

Вводная часть

В этой главе изложены минимальные требования к защите от сверхтока в случае защиты от перегрузки и защиты от короткого замыкания, при совместной защите от перегрузки и короткого замыкания и при согласовании этих защит с проводниками и аппаратами.

Глава дополняет требования, регламентированные международными стандартами серии МЭК 364, в части защиты проводников и электрических установок, в целях безопасности установок и обслуживающего персонала.

15 Общие требования

Электрические аппараты и проводники под напряжением должны быть защищены одним или несколькими устройствами для автоматического отключения питания в случае сверхтока, вызванного перегрузкой (раздел 17) или коротким замыканием (раздел 18), кроме исключений, предусмотренных этими разделами.

Защита от перегрузок и короткого замыкания должна соответствовать требованиям раздела 19.

16 Виды защитных устройств

Защитные устройства должны выбираться, исходя из следующего.

16.1 Устройства, обеспечивающие одновременную защиту от токов перегрузки и токов короткого замыкания.

Эти защитные устройства должны соответствовать напряжению сети и быть способными отключать определенный сверхток, в т. ч. предполагаемый ток короткого замыкания в месте установки устройства.

Такими защитными устройствами могут быть:

- автоматические выключатели:
- некоторые типы предохранителей;
- автоматические выключатели, объединенные с предохранителями.

Применение защитного устройства, имеющего разрывную мощность меньше значения предполагаемого тока короткого замыкания в месте установки, также допускается при соответствии устройства требованиям 18.3a), i).

П р и м е ч а н и е — Согласование характеристик предохранителей с проводниками находится на стадии рассмотрения.

16.2 Устройства, обеспечивающие защиту только от токов перегрузки

Эти защитные устройства имеют обычно обратновременную защитную характеристику, и их разрывная мощность ниже величины предполагаемого тока короткого замыкания.

16.3 Устройства, обеспечивающие защиту только от токов короткого замыкания

Устройства устанавливают в случае, если защита от перегрузки обеспечивается другими средствами или она не оговорена в настоящем пункте.

Устройства должны соответствовать определенному напряжению и быть способными отключить определенный любой ток короткого замыкания, в т. ч. предполагаемый ток короткого замыкания.

Такими устройствами могут быть:

- автоматические выключатели;
- определенные типы предохранителей.

17 Автоматическое отключение — защита от сверхтока из-за перегрузки

17.1 Условия применения

а) Проводники под напряжением

Защитные устройства должны выбираться таким образом, чтобы любой ток перегрузки в проводниках отключался до того, как он вызовет повышение температуры, недопустимое для изоляции, соединений, зажимов или окружающей среды проводников.

Исключения из этого требования даны в подпункте b).

b) Электроаппараты

Любые электроаппараты, которые могут вызвать сверхток при перегрузке, должны быть обеспечены защитными устройствами от перегрузок для автоматического отключения их питания.

Рекомендуется, чтобы защитные устройства от перегрузок не устанавливались в цепях проводников, питающих электроаппараты, которые при непреднамеренном отключении питания могут вызвать опасность для персонала, а также механического или электрического оборудования. Такие случаи могут включать в себя следующие случаи, но не ограничиваться ими:

- цепи возбуждения для двигателей постоянного и переменного (синхронных) тока;
- пепи питания полъемных магнитов;
- вторичные цепи трансформаторов тока;
- противопожарные насосы и определенные установки водоотливных (дренажных) насосов;
- полъемники:
- специальные гидравлические насосы;
- главные приводы экскаватора;
- некоторые конвейеры;
- некоторые цепи торможения;
- системы аварийного освещения и сигнализации.

В некоторых электроаппаратах практически невозможно установить устройство защиты от перегрузок. Это касается двигателей с периодической или циклической нагрузкой.

Защита от перегрузок может быть осуществлена посредством ограничения сверхтока до безопасного значения и продолжительности, например за счет особенностей проектирования.

с) Электрические аппараты и проводники под напряжением

Разрешается использование единого защитного устройства от перегрузки для двух электрических аппаратов и связанных с ними проводников цепи.

17.2 Параметры защитных устройств и проводников

а) Номинальный ток защитного устройства

Номинальный ток (I_n) защитного устройства не должен превышать токонесущую способность проводников. В случае, если устройство регулируемое, номинальный ток I_n принимают равным выбранному току уставки.

- Требования к автоматическим выключателям должны соответствовать действующим стандартам.
 - с) Требования для предохранителей должны соответствовать действующим стандартам.
- Требования к устройствам, приводимым в действие термически, должны соответствовать действующим стандартам.
 - е) Защита параллельно соединенных проводников.

Если несколько проводников соединены параллельно, чтобы обеспечить питание одной части электрооборудования, и защищены одним и тем же защитным устройством, ток должен браться как сумма допустимых токов в каждом из этих проводников.

Это условие применимо только, если проводники имеют одинаковые электрические характеристики (материал проводника, метод установки, длину, площадь поперечного сечения) и не имеют никаких ответвлений по ходу прохождения тока.

Это требование не исключает применения кольцевых цепей.

17.3 Размещение защитных устройств от перегрузки

а) Электрические аппараты и проводники под напряжением

Любое устройство от перегрузки в соответствии с 17.1 с), предназначенное для защиты электрических аппаратов, а также защиты присоединенных к ним проводников цепи, должно устанавливаться, как указано в подпункте в) настоящего пункта.

b) Проводники под напряжением

Устройство защиты от перегрузки должно быть установлено в таком месте электрической установки, в котором допустимая токонесущая способность уменьшается вследствие уменьшения площади поперечного сечения проводника или вида материала проводника, типа изоляции, методов установки, кроме следующего:

- в условиях по 17.1b);
- іі) где защитное устройство от перегрузки для проводника с большей токонесущей способностью надежно защищает проводник с меньшей токонесущей способностью.

С другой стороны, устройство защиты от перегрузки может быть установлено в любой точке по всей длине защищаемого проводника при условии, что часть проводника после точки, в которой изменяется поперечное сечение, материал проводника, тип, изоляция, конструкция, метод и место установки удовлетворяют одному из следующих условий:

- ііі) проводник защищается от короткого замыкания в соответствии с разделом 18 и нет ответвлений цепей по всему проводнику;
- іу) длина части проводника не должна превышать 3 м, и по его длине не должно быть ответвлений, а проводник конструируется таким образом, чтобы:
- свести к минимуму опасность возникновения перегрузки проводника в результате повреждения:
- он не находился вблизи любых воспламеняющихся материалов и не представляет опасности для обслуживающего персонала.

18 Автоматическое отключение — защита от короткого замыкания

18.1 Условия применения

Защитное устройство должно обеспечивать отключение тока, который возник в результате короткого замыкания либо в проводниках, либо в электрических аппаратах, которые питаются от этой системы проводников, до того, как этот ток вызовет эффект опасных термических и механических воздействий, возникающих в проводниках, соединениях или электрических аппаратах.

18.2 Определение предполагаемых токов короткого замыкания

Токи короткого замыкания могут быть определены:

- соответствующим расчетным методом;
- посредством анализа модели сети;
- измерениями в установке.

П р и м е ч а н и е — Если защитное устройство установлено в точке потребителя электроэнергии, сведения о предполагаемом токе короткого замыкания в этой точке могут быть получены от распределителя или получателя энергии.

18.3 Требования к защите от короткого замыкания

а) Характеристики устройств, защищающих от короткого замыкания

Каждое защитное устройство должно удовлетворять следующим условиям:

 i) при отключении или прерывании тока нужно учитывать напряжение системы и предполагаемый ток короткого замыкания в месте установки.

Допускается более низкая разрывная мощность, если другое защитное устройство, имеющее необходимую разрывную мощность, установлено со стороны питания; в этом случае характеристики устройств должны быть согласованы таким образом, чтобы энергия, выделяющаяся на устройстве со стороны питания, не превышала ту, которую могли бы выдержать без повреждения устройства на стороне нагрузки и проводники, защищаемые этими устройствами;

- іі) все токи, вызванные коротким замыканием, возникшим в любой точке цепи, должны быть отключены в течение времени, не превышающем допустимое (см. подпункт b), іі).
 - b) Температура проводников
- i) Согласно требованиям стандартов (ТУ) на материал изоляции проводников температура, возникающая в результате протекания тока короткого замыкания продолжительностью от 0,2 до 5 с, должна быть не более;
 - 160 °C для поливинилхлорида;
- 200 °С для резины общего назначения (натуральная резина или бутадиен-стирольный каучук, ткани и бумаги, пропитанные лаком;

220 °C — для бутиловой резины;

250 °C — для полиэтилена с поперечными связями между цепями и этиленпропиленовой резины.

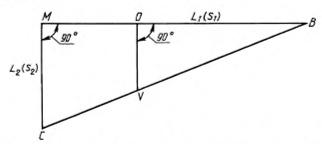
При выборе наконечников проводников, припаянных мягким или твердым припоем, сваренных или соединенных механическим обжатием, следует учитывать влияние температуры на состояние контактных соединений при токах короткого замыкания. Так, например, некоторые припои размягчаются при температуре ниже 180 °C и теряют механическую прочность.

 ii) При адиабатическом нагревании и исходя из наиболее высокой допустимой температуры при нормальном режиме работы время, необходимое для получения предельной температуры под действием тока короткого замыкания, может быть приближенно определено по формуле

$$\sqrt{t} = k \frac{A}{I}$$

где I — время, C;

А — площадь поперечного сечения, мм²;


 — действующее значение тока короткого замыкания, протекающего через площадь поперечного сечения, определяемое как среднеквадратичное значение. А:

k = 115 — для медных проводников с изоляцией из поливинилхлорида;

k = 135 — для медных проводников, изолированных любым материалом, перечисленным в подпунктах b), i), исключая поливинилхлорид.

18.4 Монтаж устройств защиты от короткого замыкания

- а) Устройство защиты от короткого замыкания должно быть установлено в месте, где уменьшение площади поперечного сечения проводника или какие-либо другие изменения вызывают корректировку характеристик, согласно требованиям 18.3а), кроме предусмотренных в подпункте b).
- Устройства защиты от короткого замыкания могут не устанавливаться в таком месте, если одновременно выполняются следующие условия:
- і) защитное устройство на стороне питания в месте, где возникают изменения, должно иметь такую рабочую характеристику, которая позволяет защищать проводник по всей длине, расположенной на стороне нагрузки, от короткого замыкания в соответствии с требованиями 18.3b), іі);
- іі) длина проводника с площадью поперечного сечения S_2 , подключенного к нагрузке, с изменением поперечного сечения не должна превышать значения, установленного диаграммой, изображенной на рисунке 15.
 - с) Устройства защиты от короткого замыкания могут не устанавливаться:
- при использовании проводников, длина которых не превышает 3 м, устойчивых к короткому замыканию;
 - в конкретных измерительных цепях;
- в цепях, которые в случае непредвиденного отключения питания, могут вызвать опасность повреждения (см. 17.1b).

 $MB = L_1$ — максимальная длина проводника с площадью поперечного сечения S_1 , защищенного от короткого замыкания защитным устройством, установленным в точке M;

 $MC = L_2$ — максимальная длина проводника с площадью поперечного сечения S_2 , защищенного от короткого замыкания защитным устройством, установленным в точке M.

Максимальная длина проводянка площадью поперечного сечения S_2 , защищенного от короткого замыкания устройством, установленным в точке M, представлена прямой OV.

 Π р и м е ч а н и е — Длины L_1 и L_2 должны быть определены соответствующими средствами с учетом напряжения системы, сопротивления источника, параметров проводника и защитного устройства.

Рисунок 15 — Диаграмма определения длины проводника на стороне нагрузки в результате уменьшения площади его поперечного сечения

19 Согласование защиты от перегрузки и короткого замыкания

19.1 Защита посредством одного устройства

Если защитное устройство от перегрузки в соответствии с требованиями 17.2 имеет разрывную мощность отключения, равную или большую разрывной мощности предполагаемого тока короткого замыкания в месте его установки, то она также защищает проводник на стороне нагрузки в этой точке от короткого замыкания. Данное устройство устанавливают, как указано в 17.3a) и 18.4a).

19.2 Защита отдельными устройствами

Требования разделов 17 и 18 применяют соответственно к устройствам защиты от перегрузки и короткого замыкания.

Характеристики устройств должны быть согласованы так, чтобы энергия тока короткого замыкания, которая проходит через устройство защиты от короткого замыкания, не превышала значение, которое может выдержать без повреждений устройство защиты от перегрузки.

20 Ограничение сверхтока посредством изменения характеристик питания или нагрузки

20.1 Ограничение путем выбора типа нагрузки

Проводники, питающие только постоянно присоединенные аппараты, должны быть защищены от тока перегрузки, если аппараты не потребляют ток, превышающий токонесущую мощность проводников и если выполняется требование 17.3b), i).

20.2 Ограничение путем выбора типа источника

Защита от тока перегрузки и короткого замыкания обеспечивается в случае, если проводники питаются от источника, дающего ток, не превышающий токонесущую мощность проводников (например, некоторые типы звонковых трансформаторов, сварочных трансформаторов, термоэлектрических генераторных установок).

Глава IV. ВЫБОР ЗАЩИТНЫХ УСТРОЙСТВ И ЗАЩИТНЫХ СИСТЕМ

Вволная часть

В настоящей главе приведены факторы, которые следует учитывать при выборе защитных устройств и систем защиты в соответствии с требованиями, предъявляемыми к установкам переменного тока (см. главу II) и установкам переменного и постоянного тока (см. главу III).

В главе содержатся критерии, которым должны удовлетворять устройства защиты:

- а) от токов короткого замыкания на проводах и оборудовании;
- b) от перегрузки на проводах и оборудовании;
- с) от косвенного прикосновения

и приведены примеры устройств и (или) мер, которые следует использовать для обеспечения этих защит. Приведены также предписания, касающиеся характеристик некоторых устройств защиты.

21 Основные требования

21.1 Плавкие вставки

Рекомендуется предусматривать средства идентификации сменных элементов, чтобы можно было заменить их элементами, имеющими то же самое номинальное напряжение и эквивалентные амперсекундные характеристики.

Конструкцией предохранителей с плавкими вставками, установленных в рабочих зонах, должна быть исключена возможность случайной замены одного сменного элемента на другой с более высоким номинальным током.

Плавкие предохранители для цепей напряжением до 1000 В, которые устанавливают в рабочих зонах, должны иметь такую конструкцию, чтобы плавкая вставка могла заменяться при находящемся под напряжением держателе предохранителя с исключением возможности поражения электрическим током.

29 7.4

21.2 Автоматические выключатели

Автоматические выключатели и связанные с ними измерительные устройства должны иметь средства задания выбранной уставки или калибровки.

Выключатели с элементами защиты, используемые в рабочих зонах, должны разрабатываться и устанавливаться так, чтобы нельзя было изменить уставку и калибровку без использования ключа или специального инструмента.

21.3 Рабочие характеристики

Если одновременно используют измерительные и отключающие устройства, следует учитывать комбинирование характеристик всех устройств, например общее время их срабатывания.

22 Процедура выбора

22.1 Выбор систем защиты

На рисунке 16 показана процедура выбора устройства или блока устройств и (или) процедур измерений, необходимых для обеспечения защиты, предписанной для каждого элемента схемы или установки. Для защиты нескольких схем можно использовать одно устройство, если оно соответствует требованиям каждой из них.

22.2 Выбор устройств защиты от коротких замыканий

При выборе плавких вставок и выключателей с элементами защиты, а также вспомогательных устройств следует учитывать, что:

- а) их характеристики должны отвечать требованиям раздела 18;
- b) они должны отключать защищаемую схему за время, не превышающее указанное в 18.3 для ожидаемого минимального короткого замыкания.

П р и м е ч а н и е — Ожидаемый минимальный ток короткого замыкания равен току короткого замыкания в точке, наибольше удаленной от устройства защиты.

22.3 Выбор устройства защиты от перегрузок

22.3.1 Согласование оборудования и устройств защиты

Характеристики устройства защиты должны выбираться в зависимости от мощности питаемого оборудования и таких его перегрузочных характеристик, как циклическая нагрузка и пуск (особенно если пуск часто повторяется или сопровождается большими нагрузками).

22.3.2 Согласование проводов и устройств защиты в низковольтных установках

Рабочая характеристика устройства защиты шинопровода от перегрузок должна удовлетворять условиям:

где I_k — номинальный ток устройства защиты, A;

 I_s — рабочий ток схемы, A;

 $I_{\rm s} =$ допустимый ток проводов, А.

 Π р и м е ч а н и е — Для регулируемых защитных устройств номинальный ток является выбранной номинальной уставкой тока;

- I_2 ток, обеспечивающий эффективную работу устройства защиты, на практике I_2 равен:
- рабочему току за нормируемое время для автоматических выключателей;
- току плавления за нормируемое время для предохранителей с плавкими вставками типа gI*;
- 0,9 тока плавления за условное время для предохранителей с плавкой вставкой типа gII*.

Примечания

- Коэффициент 0,9 учитывает влияние различия в условиях испытания между плавкими вставками gI и gII, так как вставки gII испытывают на испытательном стенде общепринятого образца с лучшими условиями охлаждения.
- 2 Защита, оговоренная в этом пункте, не обеспечивает в некоторых случаях полную защиту, например от продолжительного сверхтока меньшего, чем I₂ и не всегда экономически выгодна. Поэтому при проектировании предполагают, что слабые перегрузки большой продолжительности происходят не часто.

7.5

 ^{*} См. международные стандарты серии МЭК 269.

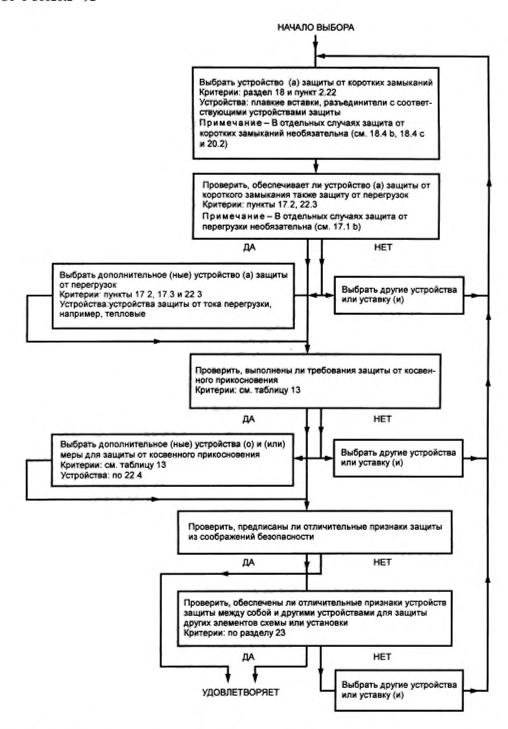


Рисунок 16 — Выбор устройств защиты (критерии выбора, примеры используемых устройств защиты)

22.4 Выбор устройства защиты от косвенного прикосновения

Защитные характеристики устройств защиты от косвенного прикосновения должны соответствовать требованиям таблицы 13, в зависимости от вида энергосистемы (см. рисунок 16).

Т а б л и ц а 13 — Сводная таблица критериев защиты от косвенного прикосновения, а также используемых для этого устройств и мер

Вид энергосистемы	Критерий	Возможные устройства или меры защиты
TN	Раздел 10	 а) Плавкие предохранители. b) Автоматические выключатели, срабатывающие от сверхтока. c) Автоматические выключатели, срабатывающие от тока нулевой последовательности. Примечание — При объединении нулевого и защитного проводников использование автоматических выключателей, срабатывающих от тока нулевой последовательности, не допускается (см. 10.7). d) Дополнительное выравнивание потенциалов*
TT	Раздел 11	а) Плавкие предохранители. b) Автоматические выключатели, срабатывающие от сверхтока. с) Автоматические выключатели, срабатывающие от тока нулевой последовательности. d) Автоматические выключатели, срабатывающие от напряжения повреждения для систем до 1000 В включ. e) Дополнительное выравнивание потенциалов*
IT	Раздел 12	 Первое повреждение (ожидаемое напряжение прикосно вения менее и равное U_L). Устройство контроля изоляции. Реле напряжения нулевой последовательности. Реле тока нулевой последовательности. Первое повреждение (ожидаемое напряжение прикосно вения более U_L). Автоматические выключатели с контролем изоляции. Автоматические выключатели, срабатывающие от напряжения нулевой последовательности. Автоматические выключатели, срабатывающие от токнулевой последовательности. Дополнительное выравнивание потенциалов*. Плавкие предохранители. Автоматические выключатели, срабатывающие от сверхтока. Автоматические выключатели, срабатывающие от сверхтока. Автоматические выключатели, срабатывающие от токнулевой последовательности. Дополнительное выравнивание потенциалов*

Дополнительное выравнивание потенциалов может применяться, как минимум, только вместе с одним из перечисленных защитных устройств.

23 Отличительные признаки устройств защиты

Защитные характеристики устройств защиты должны быть такими, чтобы:

- а) срабатывало только защитное устройство, выработанное только для одной неисправности в цепи;
- в процесс отключения вовлекалось минимальное число элементов системы питания, необходимое для надежного устранения неполадки.

ПРИЛОЖЕНИЕ A (справочное)

Выбор коэффициента К для расчета минимальной площади поперечного сечения защитных проводников (см. 14.6.2.2 а)

А.1 Выбор коэффициента К

Ориентировочные значения коэффициента k по 14.6.2.2a) выбирают по таблице А.І в зависимости от материала проводника, начальной и конечной температуры.

Количественные значения начальных температур приведены соответственно в разделах А.2 и А.3.

 Π р и м е ч а н и е — Значение коэффициента k согласно таблице А.І получены по приведенной ниже формуле, которая может также применяться при расчете значения k для других начальных и конечных температур.

Для проводников из меди

$$k = 116000 \lg \left[\frac{T_2 + 234}{T_1 + 234} \right],$$

для проводников из алюминия

$$k = 49000 \lg \left[\frac{T_2 + 228}{T_1 + 228} \right],$$

где T_1 — начальная температура проводника, °C;

Т₂ — конечная температура проводника, °С.

(формула для проводников из стали на стадии рассмотрения),

Т а б π и ц а A.I — Рекомендуемые значения коэффициента k для расчета минимальной плошади поперечного сечения защитных проводников

Начальная температу-	Конечная температу-	31	начение к для проводников	из
pa T _i , 'C	pa T ₂ , *C	меди	адюминия	стали
20	150	145	94	.55
	160	149	97	58
	200	165	107	60
	220	171	112	
	250	180	117	70
	300	195	126	
	500	235	150	
40	150	131	85	85
	160	136	87	
	200	152	99	
	220	160	105	
	250	170	110	
	300	183	119	
	500	223	145	
70	160	114	75	
75	150	105	68	
	160	111	72	
	200	131	85	
85		125	81	
	220	133	87	
90		130	85	
	250	142	93	
125		123	80	

34

А.2 Начальная температура

Рекомендуемая следующая начальная температура изоляции (T_1).

- а) Защитный проводник не расположен рядом с фазным проводником предполагаемая максимальная температура окружающей среды (20, 40 °C и т. д.).
- в) Защитный проводник расположен рядом с фазным проводником начальную температуру защитного проводника выбирают по таблице А.И соответственно типу изоляции фазного проводника.

Т а б л и ц а A.II — Рекомендуемые начальные и конечные температуры для изоляции защитных проводников

Изоляционный мятериал фазного проводняка	Начальная температу- рав T _i , °C	Конечная температура** T_2 , *С	
		случай А	случай В
Поливинилхлорид	75	150	160
Резина общего назначения			
Пропитанная лаком ткань и бу- мага	85	200	200
Бутиловая резина		220	
Полиэтилен с поперечными свя- зями между цепями	90	250	250
Этилен-пропиленовая резина			
Силикатная резина	125		

^{*} Не рекомендуются для длительной работы.

А.3 Конечная температура

Рекомендуемая следующая конечная температура изоляции (T_2).

- а) Защитный проводник является жилой или экраном кабеля конечную температуру для случая А выбирают по таблице А.П согласно типу изоляции фазных проводников.
- b) Защитный проводник не является жилой или экраном кабеля, но является общивкой или броней кабеля или как-либо по другому контактирует с фазными проводникам конечную температуру для случая В выбирают по таблице А.П соответственно типу изоляции фазных проводников.
- с) Защитный проводник не изолирован и не прикасается к материалу, который может быть поврежден при максимальной температуре, и:
 - і) доступен к обозрению и находится в ограниченном пространстве:
 - 500 °C для медных и стальных проводников,
 - 300 °С для алюминиевых проводников;
- іі) недоступен к обозрению и находится в нормальных условиях 200 °C для всех проводящих материалов;
- ііі) недоступен к обозрению и находится в условиях повышенной пожарной опасности 150 °C для всех проводящих материалов.

ПРИЛОЖЕНИЕ В (справочное)

Описание некоторых устройств защиты и их применение

В.1 Измерительные трансформаторы

Трансформаторы напряжения или тока могут использоваться для уменьшения амплитуды напряжения или тока, подаваемых на устройства защиты, или в качестве разделительных трансформаторов. Трансформаторы следует выбирать так, чтобы их характеристики согласовывались и сочетались с характеристиками устройств защиты.

В.2 Устройства защиты с использованием тока нулевой последовательности

Устройства обнаруживают наличие дефекта изоляции защищаемого участника цепи путем измерения тока утечки, остаточного тока или тока нулевой последовательности.

^{**} Значения конечной температуры, применяют для случая А, если защитный проводник является жилой или экраном кабеля, для случая В, если защитный проводник является общивкой или броней кабеля или как-либо по другому контактируют с кабелем.

Устройства защиты на токе нулевой последовательности могут использоваться во всех энергосистемах, за исключением энергосистем TN, у которых нулевые проводники комбинируют с защитными.

В.З Устройства защиты на напряжении нулевой последовательности

Устройства обнаруживают наличие дефекта изоляции защищаемого участника цепи путем измерения смещения симметрии векторов напряжения питания относительно нормального состояния или напряжения нулевой последовательности. Защита от потери фазы при многофазном питании также может потребовать применение таких устройств.

Устройства используют в основном в энергосистеме IT. Наличие одного устройства достаточно, чтобы обнаружить дефекты заземления в какой-нибудь из частей установки IT, в которой все элементы соединены непосредственно между собой без трансформатора, конденсатора или сопротивления.

В.4 Устройства защиты, чувствительные к напряжению повреждения

Устройства обнаруживают напряжение между токопроводящими частями и независимым заземлителем, соответствующим образом отделяемым от главного заземлителя. Защитное устройство, чувствительное к напряжению повреждения, применяют только в коротких маломощных ответвлениях ТТ систем с малой емкостью сети относительно земли и напряжением ниже 1000 В, где не могут быть достигнуты удовлетворительные условия заземления.

В.5 Комбинированные устройства защиты на токах и напряжениях нулевой последовательности

Устройства, использующие комбинацию методов обнаружения напряжения нулевой последовательности и тока нулевой последовательности, могут быть применены в любых энергосистемах для определения направления тока утечки от точки измерения. Такие устройства могут обнаруживать и локализовать перемещающиеся утечки и при необходимости различить утечки на землю или переходные процессы в энергосистеме.

В.6 Устройства контроля изоляции

Устройства постоянно измеряют и контролируют сопротивление изоляции в незаземленных энергосистемах.

При выборе оптимального устройства контроля изолящии следует учитывать, что некоторые устройства защиты могут сигнализировать о повреждениях в нагрузке, питаемой через выпрямители или тиристоры, в то время как другие не могут.

П р и м е ч а н и е — Измерительные схемы нескольких устройств контроля изолящии не должны подключаться параллельно (что может иметь место, например, если источники питания связаны между собой)

В.7 Дистанционные реле

Дистанционные реле следует применять в некоторых случаях для защиты системы передачи энергии высокого напряжения от повреждений изоляции только фазных проводников или от повреждений между фазой и землей.

Сравнивая ток повреждения и напряжение в точке установки, реле измеряет расстояние до точки повреждения.

Соответствующий выбор уставки и времени срабатывания реле позволяет очень быстро устранить повреждения в указанной части установки, а также обеспечивать резервную защиту.

В.8 Дифференциальная защита

Дифференциальная защиты обнаруживает повреждение, сравнивая информацию, полученную от трансформаторов тока, расположенных на каждом конце защищенной части установки.

Преимуществами устройств дифференциальной защиты являются:

- а) высокая чувствительность;
- b) мгновенное обнаружение повреждения;
- с) разграничение защищенной зоны от других частей энергосистемы.

Система не чувствительна к повреждению вне защищаемой зоны.

В.9 Устройства защиты от сверхтока

Устройства используют для измерения и защиты схем и оборудования от нагрева, возникающего в результате сверхтоков малой и длительной продолжительности. Это могут быть одно- и двунаправленные устройства прямого и непрямого действия.

Традиционные устройства защиты от сверхтока включают в себя:

- а) предохранители;
- магнитные выключатели или автоматические выключатели;
- с) термические автоматические выключатели или переключатели;
- магнитные и (или) термореле, срабатывающие от трансформаторов тока;
- е) полупроводниковые реле, срабатывающие от трансформаторов тока;
- токоограничивающие реакторы.

Устройства по подпунктам a) — e) обычно используют для защиты от сверхтоков малой продолжительности, а устройства по подпунктам c) — f) — для защиты от сверхтоков большой продолжительности.

ИНФОРМАЦИОННЫЕ ДАННЫЕ

ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Номер главы, раздела, в которых, приведена ссылка	Обозначение соответствующего международного стандарта	Обозначение отечественного НТД, на который дана ссылка
Глава 1, раздел 2	M9K 815-86	ГОСТ 9920—89
Глава 1, раздел 4	M9K 529-89	ГОСТ 14254—96

8 1 36