53 12-92/120

ИНТЕРФЕЙС ЦИФРОВОЙ ЗВУКОВОЙ

Издание официальное

ГОССТАНДАРТ РОССИИ Москва

ГОСУДАРСТВЕННЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

интерфейс цифровой звуковой

ГОСТ Р МЭК 958-93

Digital audio interface

OKII 40 4240

Лата введения 01.07.94

1. ОБЛАСТЬ ПРИМЕНЕНИЯ

В настоящем стандарте описывается последовательный однонаправленный самосинхронизирующийся интерфейс для соединения цифровой звуковой аппаратуры бытового и профессионального применения.

При применении цифровой обработки в бытовой области данный интерфейс в основном предназначен для трансляции стереофонических программ с разрешающей способностью до 20 бит на выборку. Возможно также расширение до 24 бит на выборку.

При применении в радиовещательных студиях интерфейс в основном предназначен для трансляции монофонических и стереофонических программ с частотой дискретизации 48 кГц и с разрешающей способностью до 24 бит на выборку, он также может быть использован для трансляции одного или двух сигналов с частотой дискретизации 32 кГц.

В обоих случаях вместе с программой передаются опорные тактовые импульсы и вспомогательная информация. Предусмотрен также резерв пля транспяции данных, относящихся к программному обеспечению ЭВМ.

2. НОРМАТИВНЫЕ ССЫЛКИ

Нижеследующие стандарты содержат положения, которые при ссылках на них в тексте устанавливают положения настоящего стандарта. В момент публикации данного стандарта указанные издания являлись действующими. Любой стандарт подвергается пересмотру, и необходимо, чтобы стороны, заинтересованные в соглашениях, основанных на настоящем стандарте, использовали самые последние вздания указанных ниже стандартов.

Издание официальное

© Издательство стандартов, 1993

ГОСТ 18145 (Рекомендации V.11 МККТТ) "Цепи на стыке C2 аппаратуры передачи данных с оконечным оборудованием при последовательном вводе выводе данных. Номенклатура и технические требования".

ГОСТ 23675 (Рекомендации V.11 МККТТ) "Цепи стыка С2-ИС систе-

мы передачи данных. Электрические параметры"

ГОСТ 24838 (МЭК 268-11, МЭК 268-12) "АРЭБ. Входиые и выходные параметры".

ГОСТ 26532 (Рекомендации V.11 МККТТ) "Устройства преобразования сигналов аппаратуры передачи данных для некоммутируемых каналов тональной частоты. Типы и основные параметры",

ГОСТ 27677 (МЭК 908) "Система цифровая звуковая "Компакт-

диск "Параметры".

3. ФОРМАТ ИНТЕРФЕЙСА

3.1. Определения

В настоящем стандарте применены следующие определения.

3.1.1. Частота дискретизации

Частота дискретизации – частота выборок представления звуковых сигналов.

При передаче нескольких сигналов через один интерфейс частоты дискретизации должны быть идентичны.

3.1.2. Слово звуковой выборки

Слово звуковой выборки представляет амплитуду (число битов в слове) цифровой звуковой выборки Представление линейное (кодирование в схеме с линейной частотной характеристикой), в двоичной форме с дополнением до двух.

Положительные числа соответствуют положительным аналоговым напряжениям на входе аналого-цифрового преобразователя,

Число битов в слове — 24 или 20. Если источник сообщения выдает меньшее количество битов, чем это требует формат интерфейса, то значения неиспользуемых младших значащих битов слова звуковой выборки должны устанавливаться равными логическому "0".

3.1.3. Вспомогательные биты выборки

Вспомогательные биты выборки могут быть использованы для дополнительной информации или для расширения длины слова звуковой выборки.

3.1.4. Фляг достоверности

Флаг достоверности сопровождает каждое слово звуковой выборки и индицирует достоверно оно или нет.

3.1.5. Канал статуса

Канал статуса транслирует в установленном формате информацию, связанную с каждым звуковым каналом, которая может быть декодирована любым пользователем интерфейса. Примеры информации, транслируемой в канале статуса:

дінна слов звуковых выборок, предыскажения, частота дискретизации, временные коды, буквенно-числовые коды источника и получателя сообщений.

3.1.6. Ланные пользователя

Канал данных пользователя предназначен для трансляции любой другой информации.

3.1.7. Бит четности

Бит четности предназначен для обнаружения нечетного числа ощибок, возыккающих в результате нарушения работы интерфейса.

3.1.8. Преамбулы

Преамбулы — специфические структуры, используемые для синхронизации. Существуют три различные преамбулы (см. п. 3.3.2).

3.1.9. Субкадр

Субкадр — фиксированная структура, используемая для трансляции информации, описанной в пп. с 3.1.1 по 3.1.8 (см. пп. 3.2.1 и 3.2.2).

3,1.10, Kadp

Кадр – последовательность субкадров, упомянутых в предыдущем пункте.

3,1.11. Блок

Блок — группа, включающая 192 последовательных кадра, содержащих (для каждого канала) по 192 бита данных канала статуса и обеспечиваюшая возможность трансляции структуры из 192 битов данных пользователя. Начало блока обозначается специальной преамбулой в субкадре.

3.1.12. Кодирование в канале

Кодирование в канале — метод модуляции, посредством которого двоичные цифры представляются для передачи через интерфейс.

3.2. Структура формата

3.2.1. Формат еубкадра

Каждый субкадр разделен на 32 временных интервала с номерами от 0 до 31 (см. черт. 1).

Временные интервалы 0-3 транслируют одну из трех разрешенных преамбул (см. черт. 2). Преамбулы обеспечивают синхронизацию субкадров, кадров и блоков (см. п. 3,3.2).

Временные интервалы 4 — 27 транслируют слово звуковой выборки в линейном представлении с дополнением до двух.

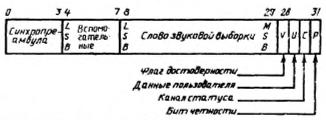
Старший значащий бит транспируется во временном интервале 27.

При применении 24-разрядного кодирования младший значащий бит транспируется во временном интервале 4.

В случае, когда достаточно 20-разрядного кодирования, младший значащий бит размещается во временном интервале 8, и временные интервалы 4 – 7 могут быть использованы для других целей. При этих условиях биты временных интервалов 4 – 7 обозначают вспомогательные биты выборки.

В случае, когда источник сообщения имеет диапазон кодирования меньший, чем обеспечивает интерфейс (24 или 20), значения неиспользуемых младший значащих битов должны быть установлены равными логическому "0". Эта процедура позволяет соединять аппараты, использующие разное число разрядов кодирования.

Временной интервал 28 транслирует флаг достоверности, сопряженный со словом звуковой выборки. Флаг имеет значение логический "0", если звуковая выборка достоверна, и значение логическая "1", если выборка недостоверна.


Временной интервал 29 гранспирует один бит канала данных пользователя, сопряженный со звуковым каналом, передаваемым в том же субкадре.

При отсутствии данных пользователя значение бита равно логическому "0".

Временной интервал 30 транслирует один бит слова канала статуса, сопряженным со эвуковым каналом, передаваемым в том же субкадре.

Временной интервал 31 транслирует бит четности: таким образом, временные интервалы с 4-го по 31-й содержат четное число единиц и четное число нулей (с учетом п. 3.3.1).

Формат субкадра

LSB - младший энсчащий бит ; MSB-старина энсчащий бит

Черт. 1

3.2.2. Формат кадра

Кадр состоит только из 2 субкадров (см. черт. 2). Скорость передачи кадров точно соответствует частоте дискретизации источника сообщения.

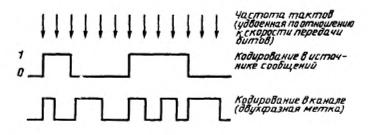
Формат кадра

M,W, 8 – обозначения пре амбул субкадров; X, Y, Z – обозначения преамбул субкадоов для радиовещательных студий

Черт. 2

В режиме двухканальной работы выборки, взятые из обоих каналов, передаются в последовательности субкадров мультиплексированием во времени.

В субкадрах, относящихся к каналу 1 (левый канал или канал А в стереофонии и основной канал в монофонии), обычно используется преамбула М. Однако эта преамбула заменяется преамбулой В один раз каждые 192 кадра. Это определяет структуру блока, используемого для организации информации в канале статуса (см. п. 3.1.5 и разд. 4). В подкадрах канала 2 (правый канал или канал В в стереофонии и вторичный канал в монофонии) всегда используется преамбула W.


В системе радиовещательных студий при работе в режиме единственного канала формат кадра идентичен формату кадра двухканального режима. Данные транслируют через канал 1, а в субкадрах, относящихся к каналу 2, значение временного интервала 28 (флаг достоверности) должно быть установлено равным логической "1" (выборка недостоверна).

3.3. Модуляция

3.3.1. Кодирование канала

С целью минимизации постоянной составляющей в линии передачи, облегчения восстановления тактового генератора в потоке данных и обеспечения нечувствительности интерфейса к полярности соединений кодирование временных интервалов 4—31 проводят с применением метода двухфазной метки. Каждый передаваемый бит представляется символом, включающим в себя два последовательных двоичных состояния. Первое из этих состояний всегда отлично от второго состояния предыдущего символа. Второе состояние символа идентично первому состоянию, если передаваемый бит является логическим "0", и отличается от него, если бит является логической "1" (см. черт. 3).

Кодирование канала

4cpr. 3

3.3.2. Преамбулы

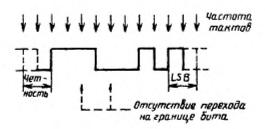
Преамбулы являются специфическими структурами, которые обеспечивают синхронизацию и идентификацию субкадров и блоков.

Для обеспечения синхронизации в пределах одного периода дискретизации и ооеспечения высокой надежности эти структуры не подчиняются правилам кодирования методом двухфаэной метки. Таким образом удается избежать представления данных как преамбул.

Используется группа из трех преамбул, передаваемых в течение длительности, выделенной для 4 временных интервалов (интервалы 0-3), и представленных восемью последовательными состояниями. Первое состояние преамбулы всегда отличается от второго состояния предшествующего символа (представляющего собой бит четности). Зависимости этих состояний преамбулы имеют вид, указанный в таблице:

	Предшествующее состояние бита четности						
Состояние преамбулы	0	1					
	Кодирова	ние канала					
"B"	11101000	00010111					
"M"	11100010	00011101					
· w	11100100	00011011					

Преамбула, которая предшествует каждой цифровой звуковой выборке, должна указывать начало выборки:


- канала A и блока
- = "W.,
- канала А, но не блока
 канала В
- = "W"

П р и м е ч в и е. Для радиовецительных студий буквы B, M, W заменены буквами Z, X, Y (см. черт. 2).

Как и при двухфазном кодировании эти преамбулы не имеют постоянвой составляющей и обеспечивают восстановление тактового генератора. Они различаются не менее чем на два состояния от любой правильной двухфазной последовательности.

П р и м с ч а и и е. На черт. 4 пред ставлена преамбула "М". Обусловленное паражитью бита четности во временном интервале 31, начало в еех преамбул должно прокожолить переходом в одном направлении (направление "0" \rightarrow "1", либо "1" \rightarrow "0"). На практике это означает, что только одна из групп преамбул может быть передана через интерфейс. Оплако существует необходимость в декодировании любого направления, поскольку в соединении может произойти изменение полярности.

Преамбуля М (11100010)

3.4. Формат данных пользователя

Биты данных пользователя могут применяться пользователем по его усмотрению. Для некоторых применений может быть выгодным принять структуру блока, подобную структуре блока канала статуса, с границами блока пользователя, выравненными с границами блока канала статуса.

Например, в некоторых процедурах синхронизации, в которых с целью удержания установившегося синхронизма может оказаться необходимым повторить или не учитывать выборки, помехи как в канале статуса, так и в данных пользователя, могут быть минимизированы путем монтажа включения повторов или неучета выборок в блоках из 192 битов, как это определено структурой блоков в интерфейсе.

При отсутствии данных пользователя значения битов пользователя равны логическому "0".

4. КАНАЛ СТАТУСА

4.1. Общие сведения

Примерами информации, предназначенной для трансляции в канале статуса, являются: длина массива данных слов звуковых выборок, количество звуковых каналов, частота дискретизации, разрешение на снятие колий, точность тактового генератора и значения предыскажений.

Информация в канале статуса организована в 192-битные слова. Первый бит каждого слова транслируется в кадре с преамбулой "В".

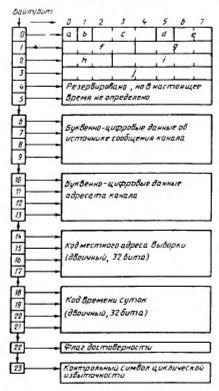
Этот первый бит определяет основное применение канала статуса.

Для радиовещательных студий значение первого бита канала статуса равно логической "1".

Для бытовой цифровой звуковой аппаратуры значение первого бита канала статуса равно логическому "О".

Вторичные применения могут быть определены в рамках этих основных применений.

4.2. Применения


4.2.1. Применения в радиовещательных студиях

Данные канала статуса организованы в форме, допускающей нарашивание байтовой ширины. Поэтому общее число байтов в блоке равно 24 (см. черт. 5).

Специфика организации представлена ниже, при этом индекс 0 означает первый байт или бит.

2-1792

Формат данных канала статуса для радновещательных студий

Сигиалы и команды для приемника

Байт О		
бит 0	"0"	Применение блока канала статуса в бытовых целях
	"1"	Применение блока канала статуса в профессио- нальных целях
бит 1	"0"	Номинальный звуковой режим
OMI I	"1"	Режим не звуковой
биты 2-4		Кодирование предыскажений звукового сигнала
биты	234	
Состояние	"000"	Предыскажения не указаны. Приемник воспри- нимает как отсутствие предыскажений с отпира- нием схемы ручного обхода
	"100"	Предыскажения отсутствуют. В приемнике схе- ма ручного обхода блокируется
	"110"	Предыскажения 50/15 мкс. В приемнике схема ручного обхода блокируется
	"111"	Предыскажения с ослаблением 6,5 дБ на частоте 800 Гц. В приемнике схема ручного обхода блоки- руется
Ree my	игие состо	рустся яния битов 2 — 4 резервированы для будущей стан-
дартизации.	THE COULD	ann onto 2 . Pesepanyouana ann oyaquan san
бит 5	"1"	Частота дискретизации источника сообщений не синхронизируется
	"0"	Отсутствие указания, частота дискретизации источника сообщения синхронизируется
биты 6-7		Кодирование частоты дискретизации
биты	67	
Состояние	"00"	Частоту дискретизации не указывают. Приемник воспринимает указанное состояние как частоту 48 кГц и отпирает схемы ручного обхода и авто- матической подстройки частоты
	"01"	Значение частоты дискретизации 48 кГц. Схемы ручного обхода или автоматической подстройки частоты блокируются
	"10"	Значение частоты 44,1 кГц. Схемы ручного обхо- да или автоматической подстройки частоты бло- кируются
	"11"	Значение частоты 32 кГц. Схемы ручного обхо- да или автоматической подстройки частоты бло- кируются
72		NIP) INTO

C. 11 FOCT P M3K 958-93.

П р и м е ч а н и е. Значение битов 0 – 4 позволяет распознать передачу от интерфейса бытового аппарага, и приемник, предназначенный для приема только формата бытового аппарата, сможет точно принять соответственно форматированный сигнал профессионального передатчика.

Байт 1		
биты 0 — 3		Кодирование режима канала
биты	0123	
Состояние	"0000"	Режим не указан. Приемник воспринимает ука- занное состояние как двухканальный режим и от- пирает схему ручного обхода
	"0001"	Двухканальный режим. Схема ручного обхода блокируется
	"0010"	Одноканальный режим (монофония), Схема руч- ного обхода блокируется
	"0011"	Первичный/вторичный режим (канал 1 — первичный). Схема ручного обхода блокируется
	"0100"	Стереофонический режим (канал 1 – левый). Схема ручного обхода блокируется
c 110	"0101"} "1110"}	Резерв для будущей стандартизации
,,,,	"1111"	Отсылка к байту 3 для будущих применений
биты 4 — 7		Кодирование сигналов управления битами поль- зователя. Зарезервированы, но в настоящее вре- мя не определены.

При наличии канала статуса все данные в байтах 0 и 1 данного блока канала статуса должны быть переданы для любого канала.

При отсутствии канала статуса значения всех данных блока канала статуса должны быть установлены равными логическому "0". Приемный интерфейс будет воспринимать это как частоту дискретизации 48 кГц. двухканальный режим с 20-битной звуковой выборкой данных и отсут-

	имо отме	тить, что в данном состоянии никакая передача от не может быть принята.
Байт 2		
биты 0 — 2		Кодирование применения вспомогательных битов выборки
биты	012	
Состояние	"000"	Применение вспомогательных битов выборки не определено. Длина слова звуковой выборки 20 бит
	"001"	Вспомогательные биты выборки используются для главных данных звуковой выборки. Длина слова звуковой выборки составляет 24 бита

c "010" no "111"	Резерв для будущей стандартизации
биты 3 – 7	Кодирование длины слова источника сообщения
	и предыстории кодирования в источнике сообще-
	ния. Резервированы, но не определены
Байт 3	Ссылочный байт (ссылка из байта 1). Резервиро-
	ван для описания будущих многоканальных функ- ций
	Значение при от сутствии байта "00000000"
Байты 4 — 5	Резерв для будущей стандартизации.
	Значение при отсутствии байта "00000000"
Байты 6 – 9	Буквенно-цифровые данные об источнике сообще-
	ния канала. Данные из 7 бит ASCII (Американский
	стандартный код для обмена информацией) с доба-
	вочным битом четности. (Первый признак в сооб- щении – байт 6)
Байты 10 – 13	Буквенно-цифровые данные адресата канала. Дан- ные из 7 бит ASCII с нечетным битом четности.
Байты 14 - 17	(Первый признак сообщения - байт 10)
DANTEL 14 - 17	Местный адресный код выборки (двоичный из 32 бит). Младшие значащие биты посыпаются пер- выми. Значения берутся из первой выборки теку- щего блока.
	 Примечание объекция вналогична функции регистра записи индексов
Байты 18 - 21	Код времени суток (двоичный код из 32 бит).
	Младшие значащие биты посыпаются первыми.
	Значения берутся из первой выборки текущего блока.
	Примечание: Речьийето фиксации времени, отсчет которого начинается с процесса кодирования на источни- ке сообщения и которое должно оставаться неизменным в процессе по спедующих операция.
П-11	a spongerer de archy major energians.

При перекодировании во временной код или в реальное время значение всех нулей двоичного адресного кода выборки должно соответствовать полночи (то есть 00 час, 00 ммн, 00 сек, 00 кадр).

Тогда перекодирование двоичного числа во временной код по соглашению потребует лишь преобладающей информации о частоте дискретизации с целью обеспечения точности линейного кодирования выборки или другой информации о синхронизации в форме по соглашению.

Байт 22

Флаг, используемый для указания, является ли достоверной информация, транспируемая данными канала статуса.

C. 13 FOCT P M3K 958-93

биты 0 — 3		Резервированы, значения устанавливаются равиы- ми "0"
бит 4	"1"	Байты с 0 по 5-й недостоверны
бит 5	"1"	Байты с 6-го по 13-й недостоверны
бит 6	"1"	Байты с 14 по 17 недостоверны
бит 7	"1"	Байты с 18 по 21 недостоверны
Байт 23		Контрольный символ циклической избыточности панных канала статуса (CRCC)

Полином преобразования:

$$G/X/ = X^8 + X^4 + X^3 + X^2 + 1$$
.

СВСС представляет информацию для определения достоверности приема полного блока данных канала статуса (байты с 0 по 22-й включительно) с начальным значением всех его битов, равным "1".

4.2,2, Применение в бытовой аппаратуре

4.2.2.1. Общий формат канала статуса

Для каждого канала канал статуса выдает следующую информацию по битам

2 3 CONTROL. Режим

Назначение битов канала статуса:

CONTROL: бит 0 = 0 (команды	Применение блока канала статуса в бытовых целях							
управления) = 1	Применение блока канала статуса в професси нальных целях							
Когда бит 0 = 0								
биты $1 - 5 = 0X000$	2 звуковых канала без предыскажений							
= 0X100	2 звуковых канала с предыскажениями 50/15 мкс							
= 0X010)	Резервированы (для 2 звуковых каналов с							
= 0X110]	предыскажениями)							
= 0XXX1	Резервирован (для 4 звуковых каналов)							
= 1X000	Цифровые данные							
= 1X1XX)	Резервированы для дальнейшей							
= 1XX1X	стандартизации							
= 1XXX1								
= X0XXX	Цифровое копирование запрещено							
= XIXXX	Цифровое копирование разрешено							
РЕЖИМ: биты $6 - 7 = 00$	Режим 0							
= 1X)	Резервированы							
= X1)								

Примечание. Х – безразлично.

C. 15 FOCT P M9K 958-93

4.2.2.2. Формат данных канала статуса (режим 0) для бытовой цифровой звуковой аппаратуры по битам

Г	10		-	CARDIN		-									ī						
	0 CONTROL					0	0	Код	класс												
Номер источ- ника сообще- ния			Ном	ер к	кнала			f	5	T81	Точность тактового генератора										
-															_						
-			_	_	_	-	-		-	_	_				-						
_	_		_	_	_		_	_							_						
					_	_															
_											_				_						
_											_				_						
					_						_				_						
_					_						_				_						
_					_																
					_																

Все биты 30 — 191 резервированы для дальнейшей стандартизации. В настоящее время их значение = "0".

Распределение битов канала статуса (режим "0"):

КОЛ КЛАССА

биты 8 (LSB) — — 15 (MSB)

- = "00000000" 2-канальный общий формат
- Звуковая выборка с дополнением до 2 с младшим значащим битом (LSB), передаваемым первым. Максимум – 20 бит на выборку. Старший значащий бит – в позиции 27. Значения неиспользуемых младших значащих битов = "0".
- Предыскажения = биты 3 и 4 "CONTROL".
- Частота дискретизации = f_s биты 24 27.
- Точность тактового генератора = биты 28 – 29.
- Канал пользователя (канал U) не используется = "0".
- Вспомогательные биты выборок используются для факультативного расширения звуковых выборок, значение в случае неиспользования = "0".
- Факультативный флаг достоверности. Значение в случае неиспользования = "0".
- Канал статуса: CiL = CiR, за исключением номера канала. Значение при отсутствии равно нулю,
- Биты "CONTROL" (номера каналов, копии и предыскажения). Копируются с источника сообщений.
- Если бит копирования = "0", цифровое копирование запрещено.
- "10000000" 2-канальная цифровая звуковая система "Компакт-диск" в соответствии с ГОСТ 27677 и приложением А настоящего стандарта.
- "01000000" 2-канальный кодер/декодер КИМ в соответствии с приложением В настоящего стандарта.
- "11000000" 2-канальный цифровой звуковой магнитофон в соответствии с приложением С настоящего стандарта.

Находится на рассмотрении:

= "XXXXXXXI" Использование для производства музыкальных программ: те же применения, что и для предыдущих кодов классов, но с дополнительной информацией для производства музыкальных программ. Эта дополнительная информация будет помещаться в интервале битов с 32 по 191 блока канала статуса.

Коды классов, не определенные настоящим стандартом, запрещены. НОМЕР ИСТОЧНИКА СООБШЕНИЯ:

= 1111 - 15

НОМЕР КАНАЛА (звуковой канал):

биты 20 (LSB) — = 0000 — безразлично = 1000 — А (левый канал для 2-канального формата) = 0100 — В (правый канал для 2-канального формата) = 1100 — С

= 1111 - 0

f, (частота дискретизации):

биты 24 – 27 = 0000 44,1 кГц = 0100 48 кГц = 1100 32 кГц

> Другие комбинации резервированы для дальнейшей стандартизации;

ТОЧНОСТЬ ТАКТОВОГО ГЕНЕРАТОРА:

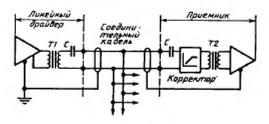
биты 28 — 29 = 00 Уровень II = 01 Уровень III = 10 Уровень I = 11 Резервирован

5. ЭЛЕКТРИЧЕСКИЕ ТРЕБОВАНИЯ

5.1. Общие сведения

Тип линии передачи и точность синхронизации формы передаваемого сигнала должны быть определены для обеспечения ожидаемого качества или цели применения.

Установлены три типа линий передач:


- симметричная,
- асимметричная,
- из оптического волокна.
- 5.2. Симметричная линия (трехпроводная передача)

5.2.1. Конструкция кабеля

Электрические параметры (характеристики) интерфейса основываются на параметрах (характеристиках), определенных в ГОСТ 18145, ГОСТ 23675 и ГОСТ 26532 для симметричных цифровых каналов по напряженим для передачи сигналов на несколько сотен метров.

Чтобы улучшить симметрию передатчиков или приемников (или обоих вместе) за пределы значений, рекомендованных указанными стандартами, следует использовать конфигурацию передающей схемы, изображенной на черт. 6.

Общая конфигурация схемы (симметричной)

Черт. 6

В данной схеме интерфейса, который использует трансформаторы в передатчиках и приемниках, трансформаторы изолируются от постоянного тока конденсаторами, включенными последовательно.

Хотя в приемнике имеется возможность корректирования амішитудно-частотных характеристик, предыскажений и т.д. корректировки, предшествующие передаче, не допускаются. Соединительный кабель должен быть жранирован и иметь волновое сопротивление от 90 до 120 Ом для обеспечения скорости, используемой при передаче данных. Эти скорости могут быть рассчитаны умножением частоты дискретизации источника сообщения на 64 — количество битов в кадре.

5.2.2. Характеристики линейного драйвера

5.2.2.1. Полное выходное сопротивление

Линейный драйвер должен иметь симметричный выход с полным выходным сопротивлением, измеренным на клеммах подсоединения линии. 110 Ом ± 20 %, в полосе частот от 0,1 до 6 МГц.

5.2.2.2. Амплитуда сигнала

Двойная амплитуда сягнала, измеренная на клеммах сопротивления 110 Ом ± 1 %, подсоединенного к выходным клеммам и при отсутствии кабеля, полжна составлять от 3 до 10 В.

5.2,3. Характеристики линейного приемника

5.2.3.1. Входное сопротивление

Значение активного входного сопротивления приемника, подключенного к кабелю, должно быть 250 Ом в полосе частот от 0,1 до 6 МГц.

Непьзя подсоединить более четырех приемников. Однако при больших длинах кабеля может оказаться необходимым сократить количество приемников для обеспечения требований, изложенных в п. 5.2.3.3.

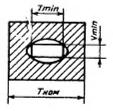
5.2.3.2. Максимальные входные сигналы

Приемник должен правильно интерпретировать данные, когда он подключен непосредственно к линейному драйверу, работающему при предельных напряжениях, указанных в п. 5.2.2.2.

5.2.3.3. Минимальные входные сигналы

Приемник должен правильно распознавать данные, когда случайный входной сигнал вызывает на его клеммах индикаторную диаграмму, характеризуемую $V_{\min} = 200$ мВ и $T_{\min} = 50$ % от $T_{\text{вом}}$ (см. черт. 7).

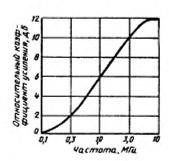
5.2.3.4. Коррекции в приемнике


Коррекции в приемнике должны применяться при использовании соединительных кабелей длиной более 100 м. На черт. 8 изображена предлагаемая коррекция частотной характеристики. В приемнике должны обеспечиваться требования, изложенные в пп. 5.2.3.2 и 5.2.3.3.

5.2.4. Точность синхронизации

5,2.4.1. Времена нарастания и спада импульсов синхронизации на выходе драйвера

Времена нарастания и спада, определяемые на уровнях 10 % и 90 % от амплитуды и измеряемые на клеммах сопротивления 110 Ом, подсоединенного непосредственно к выходу без соединительного кабеля, должны находиться в пределах от 10 до 30 нс.


Индикаторная диаграмма

 $T_{\min} = 0.5 \times T_{\max};$ $V_{\min} = 200 \text{ мB};$ $T_{\max} = \text{половине периода двухфазного символа}$

Черт. 7

Пример предлагаемой коррекции характеристики приемника

Черт. 8

5.2.4.2. Фазовое дрожание

Переход данных должен осуществляться в пределах ± 20 нс от номинального значения периода тактовой частоты, измеренного при 50 % амплитуды тактового импульса.

5.2.5. Разъемы

Стандартный разъем для входов и выходов — это круглый трехконтактный соединитель с защелкой, иногда обозначаемый как "XLR".

Выходной разъем, закрепленный на приборе, должен иметь вилку с кожухом для розетки. Разъем соответствующего кабеля должен иметь розетки с кожухом для вилки.

Входиой разъем, закрепленный на приборе, должен иметь розетки с кожухом для вилки. Разъем соответствующего кабеля должен иметь вилки с кожухом для розетки.

Штырьки распределяются следующим образом:

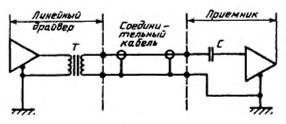
- штырек № 1: экран кабеля или сигнальный корпус;
- штырек № 2: сигнал;
- штырек Nº 3: сигнал.

Примечание. Относительная полярность штырьков 2 и 3 не имеет значения для стучая передачив цифровой форме.

Необходимо, чтобы изготовители приборов четко указывали цифровые звуковые входы и выходы, маркируя: "цифровой звуковой вход", "цифровой звуковой выход".

Когда на панели ограничено место или когда можно перепутать назначение разъема с разъемом аналогового сигнала, необходимо использовать сокращения "D1" или "D0" для указания соответственно цифровых звуковых входов и выходов.

 5.3. Асимметричная линия (двухпроводная передача)


5.3.1. Конструкция кабеля

Соединительный кабель должен быть экранирован и иметь волновое сопротивление 75 Ом ± 5 % (при длине линии 10 м) или 75 Ом ± 35 % (при длине линии менее 10 м) при скоростях, используемых при передаче данных.

Эти скорости могут быть рассчитаны путем умножения частоты дискретизации источника сообщения на 64 — количество битов в кадре.

В качестве передающей схемы можно использовать цепь, изображенную на черт. 9. В данной схеме интерфейса, в котором используются трансформаторы в передатчике, трансформатор изолирован по постоянному току при помощи последовательно подключенных конденсаторов.

Общая конфигурация схемы (асимметричная)

Черт. 9

5.3.2. Характеристики линейного драйвера

5.3.2.1. Полное выходное сопротивление

Линейный драйвер должен иметь неасимметричный выход с полным выходным сопротивлением 75 Ом ± 20 %, измеренным на клеммах подсоединения линии в полосе частот от 0,1 до 6 МГц.

5.3.2.2. Амплитуда сигнала

Двойная амплитуда сигнала, измеренная на клеммах сопротивления 75 Ом \pm 1 %, подключенного к выходным клеммам драйвера, при отсутствии соединительного кабеля должна быть равной 0,5 В \pm 20 %.

5.3.2.3. Постоянное выходное напряжение

Максимальное постоянное напряжение, измеренное на клеммах сопротивления 75 Ом ± 1 %, подсоединенного к выходным клеммам при отсутствии соединительного кабеля, должно быть менее 0,05 В.

- 5.3.3. Характеристики линейного приемника
- 5.3.3.1. Полное входное сопроцивление

Значение активного входного сопротивления приемника, подключенного к кабелю, в полосе частот от 0.1 до 6 МГи должно быть 75 Ом ± 5 %.

5.3.3.2. Максимальные входные сигналы

Приемник должен правильно интерпретировать данные, когда он подключен непосредственно к линейному драйверу, работающему в пределах максимальных напряжений, указанных в п. 5.3.2.2.

5.3.3.3. Минимальные входные сигналы

Минимальное значение двойной амплитуды входного сигнала должно быть 0.2 В.

5.3.4. Точность синхронизации

Последующие подпункты применимы только к интерфейсу бытовой аппаратуры. 5.3.4.1. Точность частоты дискретизации (точность тактового генератора)

Для обеспечения различных требований к точностям частот дискретизации установлены три уровня точности. Эти уровни должны быть указаны в данных канала статуса,

5.3,4.1.1. Уровень I: режим высокой точности

Допуск на частоту дискретизации при передаче должен быть ± 50X 10⁻⁶.

5.3.4.1.2. Уровень II: режим нормальной точности

Все приемники должны иметь возможность принимать сигнал с допуском по частоте $\pm~1000 \times 10^{-6}$.

 5.3.4.1.3. Уровень III: режим с переменным смещением частоты тактового генератора

Сигнал в этом режиме может быть принят специально созданными приемниками.

П р и м е ч а и и е. Допуск на частоту изучается. Предполагается значение е 12,5 %.

5.3.4.2. Время нарастания и спада

Для обеспечения работы при различных частотах битов канала времена нарастания и спада в процентах определяются при помощи следующих уравнений (см. черт. 10).


> Время нарастания = $100 \times T_r/(T_l + T_h)$. Время спада = $100 \times T_f/(T_l + T_h)$.

Времена нарастания и спада должны находиться в пиапазоне:

0 – 20 % – когда значение битов данных "1";

0 – 10 % – когда значения битов данных имеют два сле дующих друг за другом "0".

Времена нарастания и спада

 T_{r} — время нарастания;

 T_f — время спада;

 T_h, T_I — длительность импульсов тактового генератора

Черт. 10

5.3.4.3. Коэффициент заполнения

Коэффициент заполнения в процентах рассчитывается при помощи следующего уравнения:

Коэффициент заполнения = $100 \times T_k/(T_l + T_k)$

Коэффициент заполнения должен находиться в следующем диапазо-

He:

- 40 60 % когда значение битов данных равно логической "1":
- 45 55 % когда значения битов данных равны двум логическим "О", следующих друг за другом.

5.3.5. Соединители

Стандартным соединителем для входов и выходов является подвижный штыревой разъем с розеткой, которые описаны в ГОСТ 24838, табл. 19 n. 8.

На обоих концах кабеля должны находиться вилки.

Изготовители приборов должны четко маркировать цифровые зауковые входы и выходы. Соответствующие термины рассматриваются.

5.4. Оптическое волокно

5.4.1. Характеристики линейного драйвера

В стадии рассмотрения.

5.4.2. Характеристики линейного приемника

В стадии рассмотрения.

5.4.3. Соединители

В стадии рассмотрения.

ПРИЛОЖЕНИЕ А Обязательное

ПРИМЕНЕНИЕ ЦИФРОВОГО ЗВУКОВОГО ИНТЕРФЕЙСА В **ЦИФРОВОЙ ЗВУКОВОЙ СИСТЕМЕ "КОМПАКТ-ДИСК"** (см. ГОСТ 27677)

КАНАЛ СТАТУСА

KOЛ KЛАССА = 10000000

аналогичен общему формату

звуковая выборка = 16 бит на выборку

вспомогательные биты выборки = "0"

U-канал-субкод (см. черт. А.1 и А.2)

- четыре бита "CONTROL" канала Q (субкод) должны быть копи-

рованы к битам "CONTROL" 0-1 2-3 канала статуса - биты "CONTROL" 4 и 5 = "00"

 $-f_*$ биты 24 -27 = "0000"

Биты пользователя (U-биты) формируют один блок субкода из 1176 бит (в среднем), мультиплексированных между девым и правым каналами. Один калр компакт-диска включает один символ субкода из 12 звуковых выборок, 98 символов субкода образуют блож субкода, что составляет 12 раз по 98, то есть 1176 U-битов.

Слово субкода синхронизации включает в себя не менее 16 бит, имеющих значение "0", значение старт-бита равно "1", за ним следуют 7 бит (QRSTUVW). Расстояние между двумя старт-битами переменное и состявляет минимум 8 бит и максимум 16 Ser.

Данные пользователя ø Субкод слова синхронизации o Q1 R1 S1 TI UI VI WI Q2 R2 S2 T2 U2 V2 W2 Q96 R96 S96 T96 U96 V96 W96 Субкод слова синх ронизации ō. Q1 R1 \$1 Ti Ui Vi Wi Q2 R2 S2 Слово минимальной длины U2 V2 W2 o Q3 R3 S3 T3 U3 V3 W3 60l Q4 R4 T4 U4 V4 W4 Слово максимальной длины \$5 T5 U5 V5 Q5 R5 W5

Черт. A.1

Пример двухканального формата компакт-диска (обозначения V, U, C, P см. черт. 1).

Но- мер суб- кадра	мер ропре- мога- суб- амбула тель-		Звуковые выборки	M S B	v	U	c	P
1	В	0000	0000 XXXX XXXX XXXX XXXX		0	0	C1L	P
2	w	0000	0000 XXXX XXXX XXXX XXXX		o	lő	CIR	I P
3	M	0000	0000 XXXX XXXX XXXX XXXX		0	lŏ	C2L	Î
4	w	0000	0000 XXXX XXXX XXXX XXXX		0	ŏ	C2R	P
5	M	6000	0000 XXXX XXXX XXXX XXXX	- 1	0	ŏ	C3L	P
6	w	0000	0000 XXXX XXXX XXXX XXXX	- 1	0	lŏ	C3R	l è
7	M	0000	0000 XXXX XXXX XXXX XXXX	- 1	õ	Õ	C4L	l P
8	W	0000	0000 XXXX XXXX XXXX XXXX		o	0	C4R	P
9	M	0000	0000 XXXX XXXX XXXX XXXX		0	0	C5L	P
10	W	0000	0000 XXXX XXXX XXXX XXXX	- 1	0	ō	C5R	P
11	м	0000	0000 XXXX XXXX XXXX XXXX	- 1	0	0	C6L	P
12	w	0000	0000 XXXX XXXX XXXX XXXX		0	0	C6R	P
13	м	0000	0000 XXXX XXXX XXXX XXXX	7	0	0	C7L	P
14	W	0000	0000 XXXX XXXX XXXX XXXX	- 1	o	0	CTR	P
15	M	0000	0000 XXXX XXXX XXXX XXXX	- 1	0	0	CSL	P
16	w	0000	0000 XXXX XXXX XXXX XXXX		ŏ	0	C8R	P
17	M	0000	0000 XXXX XXXX XXXX XXXX	- 1	ŏ	ŏ	C9L	P
18	w	0000	0000 XXXX XXXX XXXX XXXX	- 1	ŏ	ŏ	C9R	P
19	M	0000	0000 XXXX XXXX XXXX XXXX	- 1	o	ŏ	CIOL	P
20	w	0000	0000 XXXX XXXX XXXX XXXX	- 1	ŏ	0	CIOR	P
21	M	0000	0000 XXXX XXXX XXXX XXXX		ŏ	0	CIIL	P
22	W	0000	0000 XXXX XXXX XXXX XXXX	- 1	ŏ	ŏ	CHE	P
23	M	0000	0000 XXXX XXXX XXXX XXXX	- 1:	ŏĺ	ŏ	CIZL	P
24	w	0000	0000 XXXX XXXX XXXX XXXX		ō	Ö	C12R	P
25	м	0000	0000 XXXX XXXX XXXX XXXX	+	,		C(3L	P
26	w	0000	0000 XXXX XXXX XXXX XXXX				CISR	P
27	M	0000	0000 XXXX XXXX XXXX XXXX				CIAL	P
28	w	0000	0000 XXXX XXXX XXXX XXXX				C14R	P
29	M	0000	0000 XXXX XXXX XXXX XXXX				CISL	P
30	w	0000	0000 XXXX XXXX XXXX XXXX				CISR	P
31	M	0000	0000 XXXX XXXX XXXX XXXX				CIGL	P
32		0000	0000 XXXX XXXX XXXX XXXX				CIGR	P
33	м	0000	0000 XXXX XXXX XXXX XXXX		- 1		C17L	P
34		0000	0000 XXXX XXXX XXXX XXXX				CI7R	P
35	М	0000	0000 XXXX XXXX XXXX XXXX	1				P
36	w	0000	0000 XXXX XXXX XXXX XXXX	1 (0 6	0 10	C18R	P

Но- мер су б- кадра	Синх- ропре- амбула	Вспо- мога- тель- ный	Звуковые выборки	M S B	v	u	C ÷	P
37	М	0000	0000 XXXX XXXX XXXX XXXX		0	1	Cist	P
38	w	0000	0000 XXXX XXXX XXXX XXXX		0	Q2	C19R	P
39	M	0000	0000 XXXX XXXX XXXX XXXX		0	R2	C20L	P
40	w	0000	0000 XXXX XXXX XXXX XXXX		0	S2	C20R	P
41	M	0000	0000 XXXX XXXX XXXX XXXX	- 1	0	T2	CZIL	P
42	W	0000	0000 XXXX XXXX XXXX XXXX	- 1	ol	U2	C21R	P
43	M	0000	0000 XXXX XXXX XXXX XXXX	- 1	0	V2	C22L	P
44	w	0000	0000 XXXX XXXX XXXX XXXX	- 1	0	W2	C22R	P
45	M	0000	0000 XXXX XXXX XXXX XXXX	- 1	0	0	C23L	P
46	W	0000	0000 XXXX XXXX XXXX XXXX	- 1	0	0	C23R	P
47	M	0000	0000 XXXX XXXX XXXX XXXX	1	0	0	C24L	P
48	W	0000	0000 XXXX XXXX XXXX XXXX	- 1	0	0	C24R	P

Черт. А2

ПРИЛОЖЕНИЕ В Обязательное

ПРИМЕНЕНИЕ ЦИФРОВОГО ЗВУКОВОГО ИНТЕРФЕЙСА В ДВУХКАНАЛЬНОМ АДАПТЕРЕ КИМ

КАНАЛ СТАТУСА

КОЛ КЛАССА

=01000000

- аналогичен общему формату
- звуковая выборка = 14 (16 бит) на выборку
- значение неиспользованных младших значащих битов = "0"
- вспомогательные биты выборки = "0"
- биты копирования и биты предыскажений битов "CONTROL" должны копироваться с источника сообщения (с инвертированием полярности)

ПРИЛОЖЕНИЕ С Обязательное

ПРИМЕНЕНИЕ ЦИФРОВОГО ЗВУКОВОГО ИНТЕРФЕЙСА В БЫТОВЫХ ДВУХКАНАЛЬНЫХ ЦИФРОВЫХ ЗВУКОВЫХ МАГНИТОФОНАХ (см. ц. 4.2.2)

КАНАЛ СТАТУСА

KOJI KJIACCA = 11000000

- яналогичен общему формату
- звуковая выборка = 16 бит/на выборку
- эначение неиспользованных младших эначацих битов = "0"
- вспомогательные биты выборки ≠ субкоду (произвольныя).
 Формат будет определен. В случае неиспользования значение = "\n".
- Остальная часть формата будет определена.

ИНФОРМАЦИОННЫЕ ДАННЫЕ

- РАЗРАБОТАН И ВНЕСЕН Техническим комитетом (ТК 18) "Бытовая радиоэлектронная аппаратура"
- УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Госстандарта России от 17.05.93 г. № 141

Настоящий стандарт подготовлен на основе прямого применения аутентичного текста международного стандарта МЭК 958—89 "Интерфейс аудиоцифровой"

3. ВВЕДЕН ВПЕРВЫЕ

4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на которыя дана ссылка	Номер раздела, пункта, приложения
ΓΟCT 18145 - 81	Раздел 2; 5.2.1
ГОСТ 23675-79	Разлел 2; 5.2.1
ГОСТ 24838 -87	Paunen 2; 5,3,5
ΓOCT 26532-85	Parament 2; 5.2.1
FOCT 27671 88	Раздел 2; 4,2,2,2; приложение А

СОДЕРЖАНИЕ

 Область применения 				'n.									ų.					٠	í.													3
2. Нормативные ссыпки					- 1			,		ï	v	,		,					×	ŗ.						-	+	i	-			1
3. Формат интерфейса .								,	,	,	į.						. ,			ç.		,	. ,			-						- 2
3.1. Определения	i		į,				٠,	,											×			,				-		á	ĸ.			- 3
3.2. Структура формата																																3
3.3. Модуляция																																- 5
3.4. Формат данных полт	k3K	omo	TO	n						,							_	v.	÷	-		_			,	-		à	į.			- 8
4. Канал статуса																																- 8
4.1. Общие сведения																																8
4.2. Применения			į.				į.						,												i.			d				8
5. Электрические требов																																18
5.1. Общие сведения																																18
 5.2. Симметричная лини 	×	(Tp	MED.	ar	po	B	og	H	B.SE	п	eţ	pe	Д	RY	a)	١.			è									ï			,	18
5.3. Асимметричная лин	KX	Û	B	yx	EH	ро	B4	χд	на	×	D	e	e	Д (2	12	2)			Ġ.									i			ï	21
 Онтическое волокия)																									4	ż	'n	ï		,	24
ПРИЛОЖЕНИЕ А – При	M	ене	911	te	ц	иф	p	Oi	80	īx	2	38	y	K¢	H	oī	o	PO	m	ep	φ	eŝ	ic;	8 3	8 1	1H	ф	pc	B	oi	A	
звуковой системе "Ком	па	KT	-7	M	CK	•	٦.			į.			,							Ţ							Ξ					24
ПРИЛОЖЕНИЕ В – При																																
льном адаптере КИМ																																27
ПРИЛОЖЕНИЕ С - Пр																																
двухканальных цифровь	x	38	уı	(0	Bi	4x		52	m	ĸ	TO	4	ю	H	x			,									,	÷.			. ,	28
Информационные данны																																

Редактор Т.С. Шеко
Технический редактор О.Н. Власова
Корректор В.И. Конуркина
Оператор С.В. Рябова

Сдано в наб. 10.06.93. Подв. в леч. 16.07.93. Усл. печ. л. 1,86, усл. кр.-отт. 1,86. Уч.-изд.л. 1,65. Тираж 354 жжз. Зак. 1782 С. 494.

Ордена "Зивк Почета" Издательство стандартов, 107076, Москве, Колоденный пер., 14. Набрано в Издательстве стандартов на НПУ Капужская типография стандартов, 248006, Капута, ул. Московская, 256.