КОРМА, КОМБИКОРМА, КОМБИКОРМОВОЕ СЫРЬЕ

Методы определения кальция

Издание официальное

МЕЖГОСУДАРСТВЕННЫЙ СОВЕТ ПО СТАНДАРТИЗАЦИИ, МЕТРОЛОГИИ И СЕРТИФИКАЦИИ Минск

Предисловие

 РАЗРАБОТАН МТК 4, Центральным институтом научного агрохимического обслуживания сельского хозяйства, Всероссийским научно-исследовательским институтом кормов, Всероссийским научно-исследовательским институтом комбикормовой промышленности

ВНЕСЕН Госстандартом России

2 ПРИНЯТ Межгосударственным Советом по стандартизации, метрологии и сертификации (протокол № 8—95 от 12 октября 1995 г.)

За принятие проголосовали:

Наименование государства	Наименование национального органа по стандартизации				
Азербайджанская Республика	Азгосстандарт				
Республика Казахстан	Госстандарт Республики Казахстан				
Киргизская Республика	Киргизстандарт				
Республика Молдова	Молдовастандарт				
Российская Федерация	Госстандарт России				
Республика Таджикистан	Таджикгосстандарт				
Туркменистан	Главная государственная инспекция Туркменистана				
Украина	Госстандарт Украины				

3 Постановлением Комитета Российской Федерации по стандартизации, метрологии и сертификации от 29 февраля 1996 г. № 147 межгосударственный стандарт ГОСТ 26570—95 введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 1 января 1997 г.

Настоящий стандарт соответствует международному стандарту ИСО 6490-1—85 «Корма для животных. Титриметрический метод определения кальция» в части раздела 6 «Определение содержания кальция титриметрическим методом»

- 4 B3AMEH ΓΟCT 26570-85
- 5 ПЕРЕИЗДАНИЕ. Февраль 2003 г.

[©] ИПК Издательство стандартов, 1996 © ИПК Издательство стандартов, 2003

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания на территории Российской Федерации без разрешения Госстандарта России

корма, комбикорма, комбикормовое сырье

Методы определения кальция

Fodder, mixed fodder and mixed fodder raw material. Methods for determination of calcium

Дата введения 1997—01—01

Настоящий стандарт распространяется на все виды растительных кормов, комбикормов и комбикормового сырья (за исключением кормовых фосфатов) и устанавливает комплексонометрический, пламенно-фотометрический, атомно-абсорбционный и титриметрический методы определения кальпия.

1 Методы отбора проб

1.1 Οτδορ προδ — πο ΓΟСΤ 7631, ΓΟСΤ 13496.0, ΓΟСΤ 13586.3, ΓΟСΤ 13979.0, ΓΟСΤ 17681, ΓΟСТ 21769, ΓΟСТ 27262, ΓΟСТ 27668.

2 Комплексонометрический метод (основной)

Сущность метода заключается в образовании в щелочной среде малодиссоциированного комплексного соединения кальция с динатриевой солью этилендиамин -N', N', N', N' - тетрауксусной кислоты (трилон Б) и определении эквивалентной точки при титровании с использованием металл-индикаторов. Минерализацию проб проводят способом мокрого или сухого озоления.

2.1 Определение кальция в пробах, подготовленных способом мокрого озоления

Метод не распространяется на отходы рыбного и мясного производства.

2.1.1 Аппаратура, реактивы и материалы

Измельчитель проб растений марки ИПР-2 или других аналогичных марок.

Сушилка кормов СК-1 или шкаф сушильный лабораторный с погрешностью поддержания температуры не более 5 °C.

Мельница лабораторная марки МРП-2 или других аналогичных марок.

Сито с отверстиями диаметром I мм.

Ножницы.

Ступка фарфоровая с пестиком.

Весы лабораторные 2-го класса точности с наибольшим пределом взвешивания 200 г по ГОСТ 24104*.

Весы лабораторные 3-го класса точности с наибольшим пределом взвещивания 500 г по ГОСТ 24104.

Нагревательное устройство для пробирок, нагреватели для колб Кьельдаля, обеспечивающие нагрев 340—380 °C.

Пробирки из термостойкого стекла или колбы Кьельдаля вместимостью 50—100 см3.

Колбы конические с широким горлом вместимостью 100 и 250 см³ по ГОСТ 25336.

Колбы мерные 1(2) - 2 - 100(1000) по ГОСТ 1770.

Цилиндр мерный 1(2,3,4) - 2 - 100 по ГОСТ 1770.

Пипетки 1(2,3) - 1(2) - 1(2,5,10) по ГОСТ 29228 и 5-2-1(2,5,10) по ГОСТ 29230.

^{*} С 1 июля 2002 г. введен в действие ГОСТ 24104—2001 (здесь и далее).

ГОСТ 26570-95

Бюретки 1(2) - 1(2) - 5 по ГОСТ 29252 и 2-1,5 по ГОСТ 29253.

Воронки стеклянные диаметром 36-56 мм по ГОСТ 25336.

Стакан фарфоровый вместимостью 1000 см3 по ГОСТ 9147.

Пробки стеклянные или резиновые.

Кислота серная по ГОСТ 4204, х.ч., ч.д.а.

Селен.

Перекись водорода по ГОСТ 10929, х.ч., ч.д.а.

Хромоген черный.

Хром темно-синий кислотный.

Эриохром сине-черный P(R).

Трилон Б [Этилендиамин - N', N', N', N'-тетрауксусной кислоты динатриевая соль, 2-водная по ГОСТ 10652, х.ч., ч.д.а. или стандарт-титр трилона Б, раствор концентрации 0,01 моль/дм³ (0,02 н.)].

Калия гидроокись по ГОСТ 24363, х.ч., ч.д.а.

Аммоний хлористый по ГОСТ 3773, х.ч., ч.д.а.

Кальцеин (флуорексон).

Натрий лимоннокислый трехзамещенный, 5,5-водный, по ГОСТ 22280, ч.д.а.

Гидроксиламин гидрохлорид по ГОСТ 5456, ч.д.а.

Триэтаноламин гидрохлорид.

Триэтаноламин.

Кальций углекислый по ГОСТ 4530, х.ч., ч.д.а.

Кальций хлористый по ГОСТ 4234, х.ч., ч.д.а.

Вода дистиллированная по ГОСТ 6709.

Соляная кислота по ГОСТ 3118, х.ч., ч.д.а., концентрированная и разбавленная дистиллированной водой в два раза (1+1).

П р и м е ч а н и е — Допускается применение импортной лабораторной посуды по классу точности и реактивов по качеству не ниже отечественных.

2.1.2 Подготовка к испытанию

2.1.2.1 Подготовка проб.

Среднюю пробу сена, силоса, сенажа или зеленых кормов измельчают на отрезки длиной 1—3 см, корнеплоды и клубнеплоды разрезают на пластинки (ломтики) толщиной до 0,8 см. Методом квартования выделяют часть пробы, масса которой после высушивания должна быть не менее 100 г. Высушивание проб проводят при температуре 60—65 °С до постоянной массы (воздушно-сухое состояние). Затем пробу размалывают на лабораторной мельнице и просеивают через сито. Остаток на сите измельчают ножницами или в ступке, добавляют к просеянной части и тщательно перемешивают.

Из средней пробы комбикормов или комбикормового сырья методом квартования выделяют около 100 г материала, размалывают без предварительного подсушивания и просеивают через сито. Остаток на сите измельчают и добавляют к пробе, затем перемешивают.

Подготовленные пробы хранят в стеклянной или пластмассовой банке в сухом месте. Пробы жидких кормов анализируют без предварительной подготовки.

2.1.2.2 Приготовление растворов и реактивов.

Проверка качества воды: к 100 см³ дистиллированной воды приливают 1 см³ аммиачного буферного раствора и 5—6 капель индикатора хромогена черного. Голубая с сиреневым оттенком окраска раствора указывает на чистоту воды.

Приготовление селенсодержащей серной кислоты

К 1000 см³ концентрированной серной кислоты добавляют 5 г селена и нагревают в колбе из термостойкого стекла до полного обесцвечивания раствора.

Приготовление индикаторов

1 г индикатора кальцеина (флуорексона) или эриохрома сине-черного, или хрома темно-синего кислотного смешивают со 100 г хлористого калия и растирают в ступке до однородного состояния. Хранят в сухом месте и в темной посуде с притертой пробкой.

Приготовление раствора триэтаноламина гидрохлорида с массовой долей 25 %

22,3 см³ триэтаноламина гидрохлорида растворяют в небольшом объеме дистиллированной воды и доводят объем до 100 см³.

Раствор триэтаноламина готовят путем разбавления его дистиллированной водой в четыре раза (1+3). Приготовление раствора углекислого кальция концентрации кальция 0,01 моль/дм³

1,001 г углекислого кальция, высушенного при температуре 105—110 °C до постоянной массы, растворяют в 20 см³ разбавленной (1+1) соляной кислоты в мерной колбе вместимостью 1000 см³. Объем в колбе доводят до метки дистиллированной водой, тщательно перемещивают.

Приготовление раствора гидроокиси калия с массовой долей 20 %

200 г гидроокиси калия растворяют в 800 см³ дистиллированной воды. Вначале растворение проводят небольшими порциями при перемешивании в 300 см³ дистиллированной воды в фарфоровом стакане. После растворения щелочи и остывания раствора приливают оставшееся количество воды, перемешивают. Работу проводят в вытяжном шкафу.

Приготовление буферного раствора

20 г хлористого аммония смешивают со 100 см³ 25%-ного водного раствора аммиака, после чего объем раствора доводят дистиллированной водой до 1000 см³, перемешивают.

Приготовление раствора трилона Б концентрации 0,01 моль/дм³

Раствор тридона Б готовят из стандарт-титра путем разбавления полученного 0,1 н. раствора дистиллированной водой в пять раз (1+4).

При отсутствии стандарт-титра навеску массой 3,722 г растворяют в небольшом объеме дистиллированной воды в мерной колбе вместимостью 1000 см³ и доводят объем до метки дистиллированной водой. Если раствор мутный, его фильтруют. Раствор хранят в полиэтиленовых или стеклянных сосудах в темном месте в течение 6 мес.

Проверка молярной концентрации раствора трилона Б

К 5 см³ раствора углекислого кальция добавляют 50 см³ дистиллированной воды, 5 см³ раствора гидроокиси калия, около 30 мг (на кончике скальпеля) одного из индикаторов. После добавления каждого реагента раствор перемешивают. Титруют раствором трилона Б до изменения окраски по п. 2.1.3. Титрование проводят дважды. За результат испытания принимают среднеарифметическое двух определений.

Концентрацию С трилона Б, моль/дм3, рассчитывают по формуле

$$C = \frac{C_1 - V_1}{V},$$

где C_1 — концентрация раствора углекислого кальция, моль/дм³;

 V_1 — объем раствора углекислого кальция, взятый для титрования, см³;

V — объем раствора трилона Б, израсходованный на титрование, см³.

2.1.3 Проведение испытания

В колбу или пробирку для сжигания отвешивают 0,2—0,3 г исследуемой пробы, добавляют 2 см³ перекиси водорода и через 1,5—2 мин 3 см³ селенсодержащей серной кислоты и слегка встряхивают. Затем колбы (пробирки) нагревают при температуре 340—380 °C до полного обесцвечивания растворов. Если через 30 мин в колбах и через 1,5 ч в пробирках не происходит обесцвечивания растворов, их охлаждают до 60—80 °C, добавляют 1 см³ перекиси водорода и снова озоляют в течение 30 мин. После обесцвечивания растворы охлаждают, количественно переносят в мерные колбы (или пробирки), доводят объем дистиллированной водой до метки 100 см³ и тщательно перемешивают.

Одновременно проводят контрольный опыт через все стадии анализа, кроме взятия навески анализируемого материала.

В коническую колбу вместимостью 250 см³ вносят в зависимости от содержания кальция от 5 до 50 см³ исследуемого раствора. Объем раствора доводят дистиллированной водой до 100 см³ (на колбах можно сделать метки и в дальнейшем доливать воду, не измеряя цилиндром). Затем в указанном порядке добавляют на кончике скальпеля (ножа) (около 30 мг) лимоннокислый натрий, гидроксиламин и 10 см³ 20%-ного раствора гидроокиси калия (рН исследуемого раствора должен быть не ниже 12,5—13,5), а также около 30 мг одного из индикаторов. После добавления каждого реагента раствор перемешивают. Титруют не позднее чем через 10 мин раствором трилона Б концентрации 0,01 моль/дм³ в присутствии "свидетеля" до перехода окраски от красно-розовой в голубую при использовании эриохрома сине-черного P(R), желто-зеленой в розовую при использовании кальцеина, фиолетовой в синюю при использовании хрома кислотного темно-синего.

В качестве "свидетеля" используют 100 см³ дистиллированной воды, в которую добавляют в тех же количествах вышеуказанные реактивы и несколько капель трилона Б.

Допускается замена сухих солей лимоннокислого натрия и гидроксиламина гидрохлорида на триэтаноламин, который вносят в количестве 3 см³.

Параллельно проводят титрование контрольного опыта.

2.1.4 Обработка результатов

2.1.4.1 Массовую долю кальция в исследуемой пробе X₁, %, рассчитывают по формуле

$$X_1 = \frac{V_2 \, (V_4 \, \cdot \, V_3) \cdot C \cdot 0,040 - 100}{V_4 - m} \; ,$$

где V, - исходный объем исследуемого раствора, см3;

 $V_3^{'}$ — объем раствора трилона Б, израсходованный на титрование контрольного опыта, см 3 ;

 V_4 — объем раствора трилона Б, израсходованный на титрование исследуемого раствора, см³;

С — концентрация раствора трилона Б;

0,040 — масса кальция, соответствующая 1 см³ раствора трилона Б с молярной концентрации эквивалента I моль/дм³, г;

 V_{ϵ} — объем исследуемого раствора, взятый для титрования, см³;

m — масса навески, г;

100 — коэффициент пересчета в проценты.

Массовую долю кальция в сухом веществе Х,, %, рассчитывают по формуле

$$X_2 = \frac{X_1 - 100}{100 - W}$$
,

где X₁ — массовая доля кальция в исследуемой пробе, %;

W — массовая доля воды в исследуемой пробе.

За окончательный результат испытания принимают среднеарифметическое двух параллельных определений.

Результаты рассчитывают до третьего десятичного знака и округляют до второго десятичного знака.

2.1.4.2 Допускаемые расхождения между результатами двух параллельных определений d_{abc} и между двумя результатами, полученными в разных условиях D_{abc} , при доверительной вероятности P = 0.95 не должны превышать следующих значений:

$$d_{a6c} = 0.030 + 0.044 \overline{X};$$

 $D_{a6c} = 0.06 + 0.14 \overset{=}{X};$

где $\overline{X}-$ среднеарифметическое результатов двух параллельных определений, % ;

Х— среднеарифметическое результатов двух определений, выполненных в разных условиях, %.

Предельную погрешность результата анализа ($\Delta_{\Sigma \text{ afc}}$) при односторонней доверительной вероятности P = 0.95 рассчитывают по формуле

$$\Delta_{\Sigma abc} = 0.035 + 0.082 \, \tilde{X}$$

Предельная погрешность результата анализа используется при оценке качества кормов.

Допускается проведение анализа без параллельных определений при наличии в партии исследуемых проб стандартных образцов (CO). В этом случае (при обязательном проведении выборочного статистического контроля сходимости параллельных определений) за результат испытания принимают результат единичного определения, если разница между воспроизведенной и аттестованной в CO массовой долей кальция не превышает \overline{D} , рассчитанного по формуле

$$\overline{D} = 0.042 + 0.098 X_{arr}$$

где \overline{D} — допускаемое отклонение среднего результата анализа от аттестованного значения компонента, %;

 X_{arr} — аттестованное значение анализируемого компонента, взятое из свидетельства на СО.

2.2 Определение кальция в пробах, подготовленных способом сухого озоления

2.2.1 Аппаратура, реактивы и материалы

Для проведения испытания применяют аппаратуру, реактивы и материалы по 2.1.1 со следующим дополнением.

Перекись водорода по ГОСТ 10929, х.ч., ч.д.а., разбавленная дистиллированной водой в десять раз (1 + 9).

Печь муфельная с регулируемым нагревом.

Тигли фарфоровые № 3 или № 4 по ГОСТ 9147.

Щипцы для тиглей муфельные.

Водяная баня.

Азотная кислота по ГОСТ 4461, х.ч., ч.д.а.

Соляная кислота по ГОСТ 3118, х.ч., ч.д.а., разбавленная дистиллированной водой в два раза (1+1).

- 2.2.2 Подготовка к испытанию
- 2.2.2.1 Подготовка проб по 2.1.2.1.
- 2.2.2.2 Приготовление реактивов и растворов по 2.1.2.2.
- 2.2.3 Проведение испытания

Навеску исследуемой пробы массой 0,5—2,0 г (в зависимости от ожидаемого содержания кальция), взвешенную с точностью до 0,001 г, помещают в предварительно прокаленный и охлажденный тигель. Тигли помещают в холодную муфельную печь и повышают температуру до 200—250 °C. После прекращения выделения дыма температуру повышают до (525±25)°С и ведут прокаливание в течение 4—5 ч при указанной температуре. Равномерный серый цвет золы указывает на хорошее озоление. При наличии несгоревших частиц угля тигель с золой охлаждают на воздухе, прибавляют несколько капель дистиллированной воды и 1—2 см³ раствора перекиси водорода, разбавленной (1 + 9). Содержимое тигля выпаривают (в сушильном шкафу, на электроплитке или другим способом), тигель снова помещают в муфельную печь и прокаливают при температуре (525±25)°С в течение одного часа. Тигель охлаждают и золу смачивают несколькими каплями дистиллированной воды, добавляют 2 см³ раствора соляной кислоты, разбавленной (1 + 1), и 5—10 см³ дистиллированной воды, перемешивают стеклянной палочкой и переносят раствор через воронку в мерную колбу вместимостью 100 см³.

Для кормов с высоким содержанием золы добавляют 5 см³ раствора соляной кислоты и нагревают до кипения.

При анализе проб костной, мясокостной, рыбной муки золу смачивают несколькими каплями дистиллированной воды, приливают 1 см³ азотной кислоты и 5 см³ соляной кислоты и доводят до кипения на водяной бане.

Тигель и воронку тщательно обмывают дистиллированной водой и доводят раствор в колбе водой до метки, тщательно перемешивают, осадку дают отстояться. При анализе проб костной, мясокостной, рыбной муки, а также комбикормов с высоким содержанием кальция исходный раствор золы разбавляют дистиллированной водой в зависимости от ожидаемого содержания кальция в 5-10 раз.

Одновременно проводят контрольный опыт через все стадии анализа, кроме взятия навески анализируемого материала. В зависимости от предполагаемого содержания кальция от 5 до 20 см³ исходного раствора золы переносят пипеткой или шприцем-дозатором в широкогорлые колбы вместимостью 250 см³, доводят объем раствора дистиллированной водой до 100 см³ (на колбах можно сделать метки и в дальнейшем доливать воду, не измеряя цилиндром). Сюда же добавляют на кончике ножа (около 30 мг) лимоннокислый натрий, гидроксиламин и 10 см³ 20%-ного раствора гидроокиси калия, а также около 30 мг одного из индикаторов. После добавления каждого реагента раствор перемешивают. Титрование проводят раствором трилона Б концентрации 0,01 моль/дм³. В качестве "свидетеля" используют 100 см³ дистиллированной воды, в которую добавляют те же реактивы и несколько капель трилона Б.

Допускается замена сухих солей лимоннокислого натрия, гидроксиламина на раствор триэтаноламина, который приливают в количестве 3 см³.

2.2.4 Обработка результатов

Обработку результатов, расчет сходимости, воспроизводимости и других точностных нормативов проводят по 2.1,4.1, 2.1.4.2,

При вычислении массовой доли кальция учитывают разбавление раствора золы.

3 Пламенно-фотометрический метод

Сущность метода заключается в сравнении интенсивности излучения кальция в пламени газ-воздух при введении в него испытуемых растворов и растворов сравнения. Устранение влияния мешающих элементов при определении кальция в солянокислых растворах достигается добавлением в фотометрируемые растворы солей стронция при использовании воздушно-пропан-бутановой смеси газов или солей магния при использовании воздушно-вой смеси газов.

3.1 Определение кальция в пробах, подготовленных способом сухого озоления

3.1.1 Аппаратура, реактивы и материалы

Весы лабораторные 2-го класса точности с наибольшим пределом взвешивания 200 г по ГОСТ 24104.

Весы лабораторные 3-го и 4-го классов точности с наибольшим пределом взвешивания 500 г по ГОСТ 24104.

Фотометр пламенный.

Колбы мерные 1(2)-2-50(100)1000 по ГОСТ 1770.

Пипетки — по 2.1.1.

Бюретки — по 2.1.1.

Печь муфельная с регулированием нагрева до 550 °C.

Пропан-бутан (бытовой в баллоне или газ городской сети).

Ацетилен растворенный технический по ГОСТ 5457.

Соляная кислота по ГОСТ 3118, х.ч., ч.д.а., концентрированная и разбавленная дистиллированной водой в два раза (1+1) и в сто раз (1+99).

Стронций хлористый 6-водный по ГОСТ 4140, ч.д.а.

Магний хлористый 6-водный по ГОСТ 4209, х.ч., ч.д.а.

Кальций углекислый по ГОСТ 4530, х.ч., ч.д.а.

Вода дистиллированная по ГОСТ 6709.

- 3.1.2 Подготовка к испытанию
- 3.1.2.1 Подготовка проб по п. 2.1.2.1.
- 3.1.2.2 Приготовление растворов и реактивов.

Приготовление раствора хлористого стронция концентрации 20 мг/см³

60,86 г хлористого стронция растворяют в дистиллированной воде, переносят в мерную колбу вместимостью 1000 см³ и доводят до метки дистиллированной водой, перемешивают. Раствор используют при работе на воздушно-пропановой смеси газов.

Рабочие растворы хлористого стронция готовят следующим образом: для работы на приборах с дифракционной решеткой готовят раствор с концентрацией стронция 10 мг/см^3 разбавлением исходного раствора дистиллированной водой (1+1). Для работы на приборах со светофильтрами готовят раствор с концентрацией стронция 2 мг/см^3 разбавлением исходного раствора водой (1+9).

Приготовление раствора хлористого магния концентрацией магния 22 мг/см³

184 г хлористого магния растворяют в дистиллированной воде, переносят в мерную колбу вместимостью 1000 см³ и доводят водой до метки, тщательно перемешивают. Раствор используют при работе на воздушно-ацетиленовой смеси газов. Рабочие растворы с концентрацией 2,2 мг/см³ магния готовят разбавлением исхолного раствора водой (1+9).

Приготовление основного раствора углекислого кальция концентрацией кальция 1 мг/см3

2,497 г углекислого кальция (реактив предварительно высушивают при температуре 105—110 °C до постоянной массы) переносят в мерную колбу вместимостью 1000 см³, приливают 20 см³ разбавленного (1+1) раствора соляной кислоты и перемешивают до полного растворения соли. Затем доливают дистиллированной водой до метки и тщательно перемешивают.

Приготовление растворов сравнения

В мерные колбы вместимостью 100 см³ отбирают пипеткой или бюреткой объем основного раствора, указанный в таблице1, доводят до метки дистиллированной водой и тщательно перемешивают. Растворы сравнения хранят в течение 1 мес.

Таблица 1

Номер раствора сравнения	1	2	3	4	5	6	7
Объем основного раствора, см ³	0	2	5	10	20	30	50
Масса кальция в 100 см ³ раствора сравнения, мг	0	2	5	10	20	30	50

3.1.3 Проведение испытания

Сухое озоление и приготовление исследуемых растворов проводят по 2.2.3.

При фотометрировании в пламени пропан-бутан-воздух пипеткой или дозатором отбирают по 10 см3 испытуемых растворов золы и растворов сравнения в химические стаканы вместимостью 50 см3, приливают дозатором 10 см3 рабочего раствора хлористого стронция и хорошо перемешивают стеклянной палочкой. Фотометрирование проводят на аналитической линии 554 нм при использовании монохроматора или на аналитической линии 623,7 им при использовании интерференционного светофильтра.

При фотометрировании в пламени ацетилен-воздух шприцем-дозатором или пипеткой отбирают по 5 см3 испытуемых растворов золы и растворов сравнения в химические стаканы вместимостью 100 см3, приливают дозатором 45 см3 рабочего раствора хлористого магния, хорошо перемешивают стеклянной палочкой и проводят фотометрирование аналогично вышеуказанному на тех же аналитических линиях.

Фотометрирование растворов сравнения проводят дважды в порядке возрастания концентрации кальция до и после фотометрирования испытуемых растворов. Проверку нулевого отсчета шкалы прибора проводят по нулевому раствору сравнения.

По окончании фотометрирования строят градуировочный график, откладывая на оси абсцисс значения массы кальция в 100 см³ в миллиграммах, по оси ординат — показания шкалы прибора.

Для построения каждой точки градуировочного графика вычисляют среднее арифметическое значение оптической плотности из двух отсчетов по шкале прибора.

Если концентрация кальция в анализируемом растворе выходит за пределы градуировочного графика, определение повторяют, разбавив предварительно исходный раствор золы раствором соляной кислоты (1+99). Затем при фотометрировании в пламени ацетилен-воздух к 5 см3 разбавленного раствора приливают 45 см³ раствора хлористого магния, а при фотометрировании в пламени пропан-бутан-воздух к 10 см³ разбавленного раствора приливают 10 см³ раствора хлористого стронция и повторяют измерение. При таком же разбавлении проводят и контрольный опыт.

3.1.4 Обработка результатов

Массовую долю кальция в исследуемой пробе X_3 , %, рассчитывают по формуле

$$X_3 = \frac{C_1 \cdot K \cdot 100}{m} \,,$$

где C_1 — масса кальция, найденная по градуировочному графику, мг в $100~{\rm cm}^3$; K — коэффициент разбавления исследуемого раствора золы;

т — масса навески, мг;

100 — коэффициент пересчета в проценты.

Массовую долю кальция в сухом веществе X_4 , %, рассчитывают по формуле

$$X_4 = \frac{X_3 - 100}{100 + W}$$

где X₁ — массовая доля кальция в исследуемой пробе, %;

W — массовая доля воды в исследуемой пробе, %.

Нормативы точности находят по 2.1.4.2.

3.2 Определение кальция в пробах, полготовленных способом мокрого озоления

3.2.1 Аппаратура, реактивы и материалы

Для проведения испытания применяют аппаратуру, реактивы и материалы по 2.1.1.

- 3.2.2 Подготовка к испытанию
- 3.2.2.1 Подготовка проб по 2.1.2.1.
- 3.2.2.2 Приготовление растворов и реактивов.

Основной раствор углекислого кальция концентрацией кальция 1 мг/см³ готовят по 3.1.2.2. Из основного раствора готовят рабочий раствор концентрацией кальция 0.1 мг/см3 путем разбавления основного раствора в 10 раз дистиллированной водой (1+9). В мерные колбы вместимостью 100 см³ отбирают объемы рабочего раствора, указанные в таблице 2, доливают до половины объема водой,

добавляют 3 см³ селенсодержащей серной кислоты, перемешивают, охлаждают, доводят объем раствора дистиллированной водой до метки и снова перемешивают.

Если концентрация кальция в анализируемом растворе выходит за пределы градуировочного графика, определение повторяют, разбавив предварительно исходный раствор золы раствором соляной кислоты (1+99).

Таблина 2

Номера растворов сравнения	1	2	3	4	5	6	7	8
Объем рабочего раствора, см ³	0	0,5	1	2	5	10	20	30
Масса кальция в 100 см ³ раствора сравнения, мг	σ	0,05	0,1	0,2	0,5	1,0	2,0	3,0

Мокрое озоление и приготовление зольных растворов проводят по 2.1.3.

3.2.3 Проведение испытания

Зольные растворы и растворы сравнения вводят в пламя ацетилен-воздух и проводят фотометрирование.

Фотометрирование растворов сравнения проводят дважды в порядке возрастания концентрации кальция. После каждого измерения проводят промывку системы подачи растворов водой. По результатам фотометрирования строят градуировочный график, как указано в 3.1.3.

3.2.4 Обработка результатов

Массовую долю кальция в воздушно-сухой пробе и сухом веществе находят по формулам, указанным в 3.1.4.

Точностные нормативы рассчитывают по 2.1.4.2.

4 Атомно-абсорбционный метод определения кальция

Метод основан на сравнении поглощения резонансного излучения свободными атомами кальция, образующимися в пламени при введении в него анализируемых растворов золы (минерализата) и растворов сравнения с известной концентрацией данного элемента.

4.1 Определение кальция в пробах, подготовленных способом сухого озоления

4.1.1 Аппаратура, реактивы и материалы

Для проведения испытания применяют аппаратуру, реактивы и материалы по 2.1.1 со следующим дополнением.

Печь муфельная, обеспечивающая поддержание температуры (550±25)°С.

Плитка электрическая.

Шиппы муфельные.

Атомно-абсорбционный спектрофотометр марки С-115 или аналогичных марок.

Лампы с полым катодом ЛСП-1.

Компрессор воздушный мембранный типа СО-45.

Тигли фарфоровые № 3-4 по ГОСТ 9147.

Пробирки вместимостью 20-25 см³ по ГОСТ 25336.

Штатив для пробирок.

Шприц-дозатор для дозирования растворов в объемах 1 см³, 5 см³ или 10 см³ с погрешностью не более 1 %.

Бюретки — по 2.1.1.

Ацетилен растворенный технический по ГОСТ 5457 или пропан-буган бытовой в баллоне.

Кислота соляная по ГОСТ 3118, х.ч., ч.д.а., концентрированная и разбавленная дистиллированной водой в два раза (1+1) и в сто раз (1+99).

Стронций хлористый 6-водный по ГОСТ 4140, ч.д.а.

Перекись водорода 30%-ный водный раствор по ГОСТ 10929, х.ч., ч.д.а. и разбавленный дистиллированной водой в десять раз (1+9).

Допускается применение импортной лабораторной посуды по классу точности и реактивов по качеству не ниже отечественных.

- 4.1.2 Подготовка к испытанию
- 4.1.2.1 Подготовка проб по 2.1.2.1.
- 4.1.2.2 Приготовление растворов и реактивов.

Приготовление раствора хлористого стронция концентрацией стронция 10 мг/см³

30,43 г 6-водного хлористого стронция растворяют примерно в 600 см³ дистиллированной воды, приливают 82 см³ концентрированной соляной кислоты, доводят до метки дистиллированной водой в мерной колбе вместимостью 1000 см³ и тшательно перемешивают.

Приготовление раствора хлористого стронция концентрацией стронция 5,5 мг/см³

16,73 г 6-водного хлористого стронция растворяют примерно в 300 см³ дистиллированной воды, приливают 45 см³ концентрированной соляной кислоты, доводят до метки дистиллированной водой в мерной колбе вместимостью 1000 см³ и тщательно перемешивают.

Приготовление основного раствора углекислого кальция концентрацией кальция 0,2 мг/см³

0,499 г углекислого кальция (реактив предварительно высушивают при температуре 105— 110 °С до постоянной массы) растворяют в 12,5 см³ разбавленной соляной кислоты (1+1), переносят в мерную колбу вместимостью 1000 см³, доливают до метки дистиллированной водой и перемешивают. Раствор хранят не более 3 мес.

Приготовление растворов сравнения

В мерные колбы вместимостью 100 см³ из бюреток приливают указанные в таблице 3 объемы основного раствора углекислого кальция, приготовленного по 4.1.2.2, доливают до метки соляной кислотой (1+99) и перемешивают. Растворы готовят в день проведения анализов и используют для градуирования атомно-абсорбционного спектрофотометра.

Таблина 3

Номера колб	- 1	2	3	4	5	6	7
Объем основного раствора, см ³	0	5	10	20	30	40	50
Масса кальция в 100 см ³ раствора сравнения, мг	0	1,0	2,0	4,0	6,0	8,0	10,0

4.1.3 Проведение испытания

Озоление проб проводят по 2.2.3.

4.1.3.1 Определение кальция с использованием воздушно-ацетиленового пламени.

Пипеткой или шприцем-дозатором отбирают в пробирки по 1 см³ растворов сравнения и раствора золы (минерализата), затем из бюретки или дозатором приливают по 10 см³ раствора хлористого стронция с концентрацией стронция 5,5 мг/см³ и перемешивают. Определение кальция проводят по аналитической линии 422,7 нм. Ширину щели монохроматора, расход газов, ток, питающий лампу с полым катодом, устанавливают в соответствии с инструкцией, прилагаемой к прибору и лампе.

При использовании пламени ацетилен-воздух в него вводят вначале нулевой раствор сравнения, не содержащий кальция, и устанавливают начало отсчета. Затем вводят в пламя остальные растворы сравнения в порядке возрастания концентрации кальция и регистрируют соответствующие им показания измерительного прибора. Отградуировав прибор по растворам сравнения, в пламя вводят растворы минерализата и регистрируют соответствующие им показания прибора. Одновременно проводят контрольный опыт. Через каждые десять измерений в пламя вводят нулевой и четвертый растворы сравнения для проверки градуировочной характеристики прибора. Если обнаружится отклонение показаний прибора, корректируют его градуировку.

Если показание прибора для раствора минерализата превышает показание седьмого раствора сравнения, определение повторяют, разбавив предварительно данный раствор минерализата соляной кислотой (1+99), при этом полученный результат увеличивают во столько раз, во сколько раз был разбавлен раствор минерализата. При таком же разбавлении проводят и контрольный опыт.

4.1.3.2 Определение кальция с использованием воздушно-пропан-бутанового пламени.

При использовании пламени пропан-бутан-воздух бюреткой или дозатором приливают в пробирки по 5 см³ растворов сравнения и растворов минерализата, затем туда же приливают по 5 см³ раствора хлористого стронция с концентрацией стронция 10 мг/см³ и перемешивают. Анализируемые растворы вводят в окислительное воздушно-пропан-бутановое пламя и измеряют поглощение света по аналитической линии 422 нм.

Градуировку прибора по растворам сравнения, а также разбавление растворов минерализата проводят по 4.1.3.1.

4.1.3.3 Обработка результатов

Содержание кальция в исследуемой пробе Х₅, %, рассчитывают по формуле

$$X_5 = \frac{(M_1 \cdot M_2) \cdot K \cdot 100}{m}$$

где M_1 — масса кальция в 100 см³ раствора минерализата (золы), мг;

 M_2 — среднеарифметическое значение массы кальция в 100 см³ раствора контрольного опыта, мг

К — коэффициент разбавления анализируемых растворов минерализата;

100 — коэффициент пересчета в проценты;

т — масса навески, мг.

Массовую долю кальция в сухом веществе в процентах находят по 2.1.4.1.

Результаты рассчитывают до третьего десятичного знака и округляют до второго десятичного знака.

Точностные нормативы находят по 2.1.4.2.

5 Комплексонометрический метод с использованием арсеназо

Сущность метода заключается в образовании в щелочной среде малодиссоциированного комплексного соединения кальция с динатриевой солью этилендиамин-N', N', N', N', тетрауксусной кислоты (трилон Б) и определении эквивалентной точки при титровании с использованием растворов арсеназо и 8-оксихинолина.

Метод распространяется на комбикорма.

5.1 Аппаратура, реактивы и материалы

Весы лабораторные 2-го класса точности с наибольшим пределом взвешивания 200 г по ГОСТ 24104.

Печь муфельная с регулируемым нагревом.

Тигли фарфоровые № 3 или № 4 по ГОСТ 9147.

Колбы мерные исполнений 1, 2, вместимостью 100 и 1000 см3 по ГОСТ 1770.

Воронки стеклянные диаметром 6-7 см по ГОСТ 25336.

Стаканы или колбы вместимостью 50 см3 по ГОСТ 25336.

Фильтры обеззоленные по ГОСТ 12026.

Пипетки — по 2.1.1.

Бюретки — по 2.1.1,

Ступка фарфоровая.

Эксикатор по ГОСТ 25336.

Соляная кислота по ГОСТ 3118, х.ч., ч.д.а., концентрированная и разбавленная дистиллированной водой в два раза (1+1).

Аммиак водный по ГОСТ 3760, ч.д.а. (раствор массовой концентрации 250 г/дм³).

Аммоний хлористый по ГОСТ 3773, ч.д.а.

Арсеназо (уранон)-2-(арсенофенилазо)-1,8-диоксинафталин-3,6-дисульфокислота.

Трилон Б по ГОСТ 10652, х.ч., ч.д.а., раствор концентрации 0,01 моль/дм³.

Калий хлористый по ГОСТ 4234, х.ч., ч.д.а.

8-оксихинолин.

Вода дистиллированияя по ГОСТ 6709.

5.2 Подготовка к испытанию

- 5.2.1 Подготовка проб по 2.1.2.1.
- 5.2.2 Приготовление растворов и реактивов
- 5.2.2.1 Приготовление индикатора арсеназо.

1 г арсеназо тщательно растирают в ступке с 100 г хлористого калия до однородного состояния. Сухую смесь хранят в темной посуде с притертой пробкой. 10 г смеси растворяют в 1 дм³ дистиллированной воды. Раствор хранят в темной склянке.

5.2.2.2 Приготовление раствора 8-оксихинолина.

2,5 г 8-оксихинолина помещают в мерную колбу вместимостью 1 дм³, добавляют около 200 см³ дистиллированной воды, 10 см³ концентрированной соляной кислоты, доводят водой до метки и перемешивают. Раствор хранят в темной склянке.

5.2.2.3 Приготовление индикаторной смеси

Смешивают растворы арсеназо и 8-оксихинолина в соотношении 3:1. Смесь должна отстояться 15 дней. Хранят в темной посуде. Срок хранения неограничен.

- 5.2.2.4 Приготовление раствора хлористого аммония концентрации с (NH,Cl) = 1 моль/дм³.
- 53,5 г хлористого аммония растворяют в дистиллированной воде и объем раствора доводят до лм³ дистиллированной волой.

5.2.2.5 Приготовление аммиака концентрации с (NH,OH) = 3.84 моль/дм³.

- 75,1 см³ аммиака растворяют в дистиллированной воде и объем раствора доводят до 1 дм³ дистиллированной водой.
 - 5.2.2.6 Приготовление аммиачно-хлоридного буферного раствора с рН = 12.

Растворы, приготовленные по 5,2.2.4, 5.2.2.5, смешивают в соотношении 1:1.

5.3 Проведение испытания

В предварительно прокаленный и взвещенный тигель отвешивают навеску исследуемой пробы массой г. Тигли с пробой прокаливают в муфельной печи при температуре (525±25)°С в течение 4—5 ч. Затем. тигли охлаждают, золу смачивают 1,5 см3 раствора соляной кислоты, разбавленной (1+1), перемешивают и переносят раствор на фильтр через воронку в мерную колбу вместимостью 100 см3. Тигель и фильтр многократно обмывают водой, доводят раствор до метки и перемешивают.

В стаканы или колбы отбирают из бюретки последовательно до 5 см3 аммиачно-хлоридного буфера и индикаторной смеси, пипеткой вносят 1—2 см³ зольного раствора пробы и титруют раствором трилона Б концентрации 0.01 моль/дм³ до перехода окраски из красно-синей в красно-оранжевую.

5.4 Обработка результатов

5.4.1 Массовую долю кальция X₆, %, в испытуемой пробе рассчитывают по формуле

$$X_6 = \frac{V_1 \quad V_2 \cdot 0.04 \cdot 100 \quad C}{V_2 \quad m}$$

где V_1 — объем зольного раствора пробы, см³; V_2 — объем раствора трилона Б, пошедший на титрование, см³;

0.04 — масса кальция, соответствующая 1 см³ раствора трилона Б молярной концентрации эквивалента 1 моль/дм3, г;

 V_3 — объем пробы, взятый для титрования, см³;

100 — коэффициент пересчета в проценты;

С — концентрация раствора трилона Б, моль/дм³;

т — масса пробы. г.

5.4.2 За окончательный результат испытания принимают среднеарифметическое значение результатов двух определений.

Результаты рассчитывают с точностью до третьего десятичного знака и округляют до второго десятичного знака.

Допускаемые расхождения между результатами двух параллельных определений (d) и между двумя результатами, полученными в разных условиях (D), при доверительной вероятности P = 0.95не должны превыщать следующих значений:

$$d = 0.05 + 0.025 \,\overline{X},$$

$$D = 0.14 + 0.07 \,\tilde{X}.$$

где \overline{X} — среднеарифметическое результатов двух параллельных определений, %;

 $ar{ar{X}}$ — среднеарифметическое результатов двух определений, выполненных в разных условиях, %.

6 Определение содержания кальция титриметрическим методом

6.1 Назначение и область применения

Метод применим для всех кормов, в которых содержание кальция превышает 1 г/кг.

6.2 Ссылки

ГОСТ 13496.0 "Комбикорма, сырье. Методы отбора проб".

6.3 Сущность метода заключается в сжигании образца, обработке золы соляной кислотой и осаждении кальция в виде оксалата кальция, растворении осадка в серной кислоте и титровании стандартным титрованным раствором перманганата калия образующейся щавелевой кислоты.

6.4 Реактивы

Все реактивы должны быть аналитического качества, а применяемая вода должна быть дистиллированной.

- 6.4.1 Соляная кислота, приблизительно 30 % (по массе) ($d_{20} = 1.05 \text{ г/см}^3$),
- 6.4.2 Азотная кислота концентрированная ($d_{20} = 1,40 \text{ г/см}^3$).
- 6.4.3 Серная кислота, приблизительно 20 % (по массе) ($d_{20}=1,13 \text{ г/см}^3$). 6.4.4 Раствор аммиака, приблизительно 33 % (по массе) ($d_{20}=0,89 \text{ г/см}^3$).
- 6.4.5 Оксалат аммония, холодный и насыщенный раствор.
- 6.4.6 Лимонная кислота, моногидрат, раствор концентрации 300 г/см³.
- 6.4.7 Хлористый аммоний, раствор концентрации 50 г/дм³.
- 6.4.8 Бромкрезоловый зеленый, раствор концентрации 0.4 г/дм³.
- 6.4.9 Перманганат калия, стандартный раствор, концентрации $c(^{1}/_{5} \text{ KMnO}_{4}) = 0.1 \text{ моль/дм}^{3}$.

6.5 Аппаратура

- 6.5.1 Электрическая муфельная печь с температурой нагрева (550±20)°С.
- 6.5.2 Титель для прокадивания из платины, кварца или фарфора.
- 6.5.3 Стеклянный фильтр, степень пористости Р 16 (размер пор от 10 до 16 мкм).
- 6.5.4 Кипяшая воляная баня.
- 6.5.5 Химический стакан вместимостью 250 см³.
- 6.5.6 Мерная колба вместимостью 250 см³.
- 6.5.7 Аналитические весы.

6.6 Отбор образцов

Отбор образцов — по ГОСТ 13496.0.

6.7 Методика определения

- 6.7.1 Подготовка проб по ГОСТ 13496.0.
- 6.7.2 Навеска пробы

Взвешивают около 5 г образца с точностью до 1 мг и помещают в тигель для прокаливания (6.5.2).

6.7.3 Проведение испытания

- 6.7.3.1 Навеску сжигают в электрической муфельной печи (6.5.1) при температуре (550±20)°С до полного разрушения всего органического вещества (обычно для этого достаточно 4 ч). Если осталось немного органического вещества (черные частицы), то добавляют несколько капель азотной кислоты (6.4.2), выпаривают на горячей плитке и снова сжигают в муфельной печи при температуре (550±20) °C в течение 30 мин. Повторяют сжигание до тех пор, пока не будет разрушено все органическое вещество. Золу переносят в химический стакан вместимостью 250 см3 (6.5.5).
- 6.7.3.2 Добавляют 40 см³ соляной кислоты (6.4.1), 60 см³ дистиллированной воды и несколько капель азотной кислоты (6.4.2). Доводят до кипения и кипятят в течение 30 мин. Охлаждают и переносят раствор в мерную колбу вместимостью 250 см3 (6.5.6). Доведя водой до метки, перемешивают и фильтруют. При этом получают исследуемый раствор.
- 6.7.3.3 С помощью пипетки переносят аликвоту исследуемого раствора (6.7.3.2), содержащую от 10 до 40 мг кальция (в соответствии с ожидаемым содержанием), в химический стакан вместимостью 250 см3 (6.5.5). Добавляют 1 см3 раствора лимонной кислоты (6.4.6) и 5 см3 раствора хлористого аммония (6.4.7). Доводят объем водой примерно до 100 см3. Доводят до кипения, добавляют 10 капель бромкрезолового зеленого (6.4.8) и 30 см³ теплого раствора оксалата аммония (6.4.5). Если образуется осадок, его растворяют, добавив несколько капель соляной кислоты (6.4.1).

Нейтрализуют очень медленно раствором аммония (6.4.4) при постоянном перемешивании до достижения рН 4,4-4,6 (то есть до изменения цвета индикатора). Помещают стакан на кипящую водяную баню (6.5.4) и оставляют на 30 мин, чтобы осел образовавшийся осадок. Снимают стакан с водяной бани, дают раствору постоять 1 ч и фильтруют через стеклянный фильтр (6.5.3).

Затем промывают стеклянный фидьтр и стакан водой до полного удаления избытка оксалата аммония, о чем свидетельствует отсутствие хлора в промывной воде.

Помещают стеклянный фильтр в стакан вместимостью 250 см3. Добавляют 80 см3 серной кислоты (6.4.3) и нагревают до 70-80 °C для растворения осадка.

6.7.3.4 Титруют горячий раствор стандартным раствором перманганата калия (6.4.9) до появления розового окрашивания, не исчезающего в течение 1 мин.

6.7.4 Число определений

Анализы проводят в двух параллельных определениях.

6.8 Обработка результатов

6.8.1 Формула для расчета

Массовую долю кальция X₇, г. на килограмм исследуемого продукта рассчитывают по формуле

$$X_{7} = \frac{20,04 \cdot V \cdot C \cdot 250}{m \cdot V_{1}} \; ,$$

где V — объем стандартного раствора перманганата калия, использованный на титрование, см³;

С — точная концентрация стандартного титрованного раствора перманганата калия, моль/дм³;

т — масса навески, г;

 V_1 — объем аликвоты исследуемого раствора, отобранный в соответствии с 6.7.3.3.

За результат анализа принимают среднеарифметическое значение двух определений (6.7.4) при достаточной сходимости.

6.8.2 Сходимость

Расхождения между двумя параллельными определениями не должны превышать:

г/кг (в абсолютных единицах) — при содержании кальция менее 50 г/кг;

2 % (относительная величина) — при среднем содержании кальция 50 г/кг и более.

6.9 Замечания по проведению испытания

6.9.1 Для определения очень низкого содержания кальция применяют метод по ГОСТ 28901.

6.9.2 Если образец состоит исключительно из минеральных веществ, его растворяют в соляной кислоте без сжигания.

В случае таких продуктов, как алюмокалиевые фосфаты, которые с трудом растворяются в кислотах, смешивают навеску в платиновой чашке с пятикратной массой смеси, содержащей равные части карбоната натрия и карбоната калия. Осторожно нагревают до полного плавления смеси. После охлаждения растворяют в соляной кислоте.

6.9.3 Если содержание магния в образце превышает ожидаемое содержание кальция, проводят повторное осаждение оксалатом кальция.

ИНФОРМАЦИОННЫЕ ДАННЫЕ

ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	на который дана пункта на который дана		на который дана пункта		
FOCT 1770—74 FOCT 3118—77 FOCT 3760—79 FOCT 3773—72 FOCT 4140—74 FOCT 4204—77 FOCT 4234—77 FOCT 4234—77 FOCT 4461—77 FOCT 4530—76 FOCT 5456—79 FOCT 5457—75 FOCT 6709—72 FOCT 7631—85 FOCT 9147—80 FOCT 10652—73 FOCT 10929—76	2.1.1, 3.1.1, 5.1 2.1.1, 2.2.1, 3.1.1, 4.1.1, 5.1 5.1 2.1.1, 5.1 3.1.1, 4.1.1 2.1.1, 5.1 2.1.1, 5.1 2.2.1 2.1.1, 3.1.1 2.1.1, 3.1.1 2.1.1, 3.1.1, 4.1.1 2.1.1, 3.1.1, 5.1 1.1 2.1.1, 2.2.1, 4.1.1, 5.1 2.1.1, 5.1 2.1.1, 5.1	FOCT 12026-76 FOCT 13496.0-80 FOCT 13586.3-83 FOCT 13979.0-86 FOCT 17681-82 FOCT 21769-84 FOCT 22280-76 FOCT 24104-88 FOCT 24363-80 FOCT 27262-87 FOCT 27668-88 FOCT 28901-91 FOCT 29228-91 FOCT 29225-91 FOCT 29253-91	5.1 1.1, 6.2, 6.6, 6.7.1 1.1 1.1 1.1 2.1.1 2.1.1, 3.1.1, 5.1 2.1.1 2.1.1, 4.1.1, 5.1 1.1 1.1 6.9.1 2.1.1 2.1.1 2.1.1 2.1.1 2.1.1		

УДК 636.087.7.001.4:006.354 MKC 65.120 C19 OКСТУ 9209, 9709

Ключевые слова: корма, комбикорма, комбикормовое сырье, отбор проб, комплексонометрический метод, пламенно-фотометрический метод, атомно-абсорбционный метод, титриметрический метод определения кальция

Редактор Т.П. Шашина Технический редактор В.Н. Прусакова Корректор Т.И. Конопенко Компьютерная верстка С.В. Рябовой

Изд. лиц. № 02354 от 14.07,2000, Подписано в печать 06.03.2003. Усл.печ.д. 1,86. Уч.-изд.л. 1,60. Тираж 62 экз. С 9894. Зак. 81.

> ИПК Издательство стандартов, 107076 Москва, Колодезный пер., 14. http://www.standards.ru e-mail: info®standards.ru Набрано и отпечатано в ИПК Издательство стандартов