СПЛАВЫ АЛЮМИНИЕВЫЕ ЛИТЕЙНЫЕ И ДЕФОРМИРУЕМЫЕ

Методы определения меди

Издание официальное

Предисловие

 РАЗРАБОТАН ОАО «Всероссийский институт легких сплавов» (ОАО ВИЛС), Межгосударственным техническим комитетом МТК 297 «Материалы и полуфабрикаты из легких и специальных сплавов»

ВНЕСЕН Госстандартом России

2 ПРИНЯТ Межгосударственным Советом по стандартизации, метрологии и сертификации (протокол от 12 ноября 1998 г. № 14—98)

За принятие проголосовали:

Наименование государства	Наименование национального органа по стандарти зации	
Азербайджанская Республика	Азгосстандарт	
Республика Армения	Армгосстандарт	
Республика Беларусь	Госстандарт Беларуси	
Республика Казахстан	Госстандарт Республики Казахстан	
Киргизская Республика	Киргизстандарт	
Российская Федерация	Госстандарт России	
Республика Таджикистан	Таджикгосстандарт	
Туркменистан	Главная государственная инспекция Туркменистана	
Республика Узбекистан	Узгосстандарт	
Украина	Госстандарт Украины	

- 3 Постановлением Государственного комитета Российской Федерации по стандартизации и метрологии от 21 апреля 1999 г. № 132 межгосударственный стандарт ГОСТ 11739.13—98 введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 1 января 2000 года
 - 4 B3AMEH ΓΟCT 11739.13-82
 - 5 ПЕРЕИЗДАНИЕ. Август 2002 г.

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен в качестве официального издания на территории Российской Федерации без разрешения Госстандарта России

[©] ИПК Издательство стандартов, 1999 © ИПК Издательство стандартов, 2002

Содержание

1	Область применения
2	Нормативные ссылки
3	Общие требования
4	Электрогравиметрический метод определения меди.
	Электрогравиметрический метод ускоренного определения меди
6	Фотометрический метод определения меди
	Атомно-абсорбционный метод определения меди
	Приложение А Библиография

СПЛАВЫ АЛЮМИНИЕВЫЕ ЛИТЕЙНЫЕ И ДЕФОРМИРУЕМЫЕ

Методы определения меди

Aluminium easting and wrought alloys. Methods for determination of copper

Дата введения 2000-01-01

1 Область применения

Настоящий стандарт устанавливает электрогравиметрический (при массовой доле от 0,5 до 12,0 %), фотометрический (при массовой доле от 0,002 до 0,8 %) и атомно-абсорбционный (при массовой доле от 0,005 до 8,0 %) методы определения меди.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 859-2001 Медь. Марки

ГОСТ 3118-77 Кислота соляная. Технические условия

ГОСТ 3652—69 Кислота лимонная моногидрат и безводная. Технические условия

ГОСТ 3759—75 Алюминий хлористый 6-водный. Технические условия

ГОСТ 3760-79 Аммиак водный. Технические условия

ГОСТ 4204-77 Кислота серная. Технические условия

ГОСТ 4328—77 Натрия гидроокись. Технические условия ГОСТ 4461—77 Кислота азотная. Технические условия

ГОСТ 5457—75 Ацетилен растворенный и газообразный технический. Технические условия ГОСТ 5841—74 Гидразин сернокислый ГОСТ 6563—75 Изделия технические из благородных металлов и сплавов. Технические условия

ГОСТ 9656—75 Кислота борная. Технические условия

ГОСТ 10484—78 Кислота фтористоводородная. Технические условия

ГОСТ 10929-76 Водорода пероксид. Технические условия

ГОСТ 11069-74 Алюминий первичный. Марки

ГОСТ 18300—87 Спирт этиловый ректификованный технический. Технические условия

ГОСТ 25086—87 Цветные металлы и их сплавы. Общие требования к методам анализа

3 Общие требования

- Общие требования к методам анализа по ГОСТ 25086 с дополнением.
- 3.1.1 За результат анализа принимают среднее арифметическое результатов двух параллельных определений.

4 Электрогравиметрический метод определения меди

4.1 Сушность метода

Метод основан на растворении пробы в смеси хлорной и азотной кислот, обезвоживании и коагуляции кремния, удалений его отгонкой в виде тетрафторида, электролитическом выделении меди из азотнокислой среды в присутствии восстановителя — сернокислого гидразина и ее взвешивании. Определению мешают олово, сурьма и висмут.

ГОСТ 11739.13-98

4.2 Аппаратура, реактивы и растворы

Лабораторная установка для электролиза, снабженная устройством для перемешивания электролита (вращающийся анод, магнитная мешалка или барботер).

Электроды Фишера сетчатые платиновые по ГОСТ 6563.

Шкаф сушильный с терморегулятором.

Печь муфельная.

Кислота хлорная плотностью 1,67 г/см3 и раствор 1:1 [1].

Кислота азотная по ГОСТ 4461 плотностью 1,35—1,40 г/см3 и раствор 1:1.

Кислота серная по ГОСТ 4204 плотностью 1,84 г/см3.

Кислота фтористоводородная по ГОСТ 10484.

Гидразин сернокислый по ГОСТ 5841.

Спирт этиловый ректификованный технический по ГОСТ 18300 (10 см³ на одно определение).

Адсорбент (мацерированная бумага): 100 г измельченных фильтров («красная лента») помещают в стакан вместимостью 500 см³, приливают 300 см³ горячей воды и перемешивают мешалкой до получения однородной массы.

4.3 Подготовка к анализу

Перед использованием сетчатый катод прокаливают при температуре 800—900 °С в течение 3—5 мин, затем охлаждают. Катод погружают в этиловый спирт, высушивают в сушильном шкафу при температуре 100—110 °С в течение 1—2 мин, помещают в эксикатор и после охлаждения до комнатной температуры взвешивают.

4.4 Проведение анализа

4.4.1 Навеску пробы помещают в стакан вместимостью 400 см³ и осторожно, небольшими порциями приливают смесь хлорной и азотной кислот (см. таблицу 1).

Таблица 1

Массовая доля меди, %	Масса навески пробы, г	Объем раствора хлорной кислоты, см ³	Объем азотнов кислоты, см3
От 0,5 до 1,0 включ.	2	75	5 5
Св. 1,0 » 12,0 »	1	40	

После окончания бурной реакции раствор выпаривают до выделения обильных белых паров хлорной кислоты и продолжают нагревание в течение 15—20 мин.

К охлажденному осадку приливают 200 см³ горячей воды, осторожно перемешивают, нагревают до растворения солей и выдерживают при температуре 40—60 °C в течение 30 мин.

Раствор с осадком фильтруют через фильтр средней плотности («белая лента») с адсорбентом, осадок промывают 400-500 см³ горячей воды, собирая фильтрат и промывные воды в один и тот же стакан (основной раствор).

Фильтр с осадком помещают в платиновый тигель, высушивают, озоляют, не допуская воспламенения, и прокаливают при температуре 500—550 °C в течение 5 мин. После охлаждения в тигель добавляют десять капель серной кислоты, 5 см³ фтористоводородной кислоты и по каплям азотную кислоту (приблизительно 1—2 см³) до получения прозрачного раствора. Раствор выпаривают досуха, к сухому остатку приливают 5 см³ горячей воды, 1 см³ хлорной кислоты и растворяют его при умеренном нагревании. После охлаждения раствор присоединяют к основному раствору в стакане (при необходимости фильтруют).

4.4.2 Раствор выпаривают до объема 160—170 см³, приливают 5 см³ азотной кислоты, добавляют 0,2 г сернокислого гидразина и нагревают до температуры 60—70 °С. В полученный раствор погружают электроды и, постоянно перемешивая, подвергают его электролизу в режиме: плотность тока 1,5—2,0 А на 1 дм² площади катода и напряжение 2—2,5 В.

Электролиз проводят в течение 25—30 мин до тех пор, пока раствор не обесцветится. Для контроля полноты осаждения меди на катоде уровень электролита повышают на 1 см добавлением воды и подвергают раствор электролизу в течение еще 10—15 мин. Электролиз считают законченным, если на вновь погруженной поверхности катода не выделится медь. Не выключая ток, убирают стакан с электролитом и быстро заменяют его химическим стаканом с водой, вода должна полностью покрывать электроды.

Затем стакан с водой убирают, выключают ток, отсоединяют электроды от электролизера, после чего промывают катод быстрым погружением в этиловый спирт, сушат его в сушильном шкафу при температуре 100—110 °C в течение 1—2 мин, помещают в эксикатор и после охлаждения до комнатной температуры взвешивают.

Для последующего использования катод погружают в теплый раствор азотной кислоты до растворения меди, затем тщательно промывают его водой и далее поступают в соответствии с 4.3.

4.5 Обработка результатов

4.5.1 Массовую долю меди Х, %, вычисляют по формуле

$$X = \frac{m_2 - m_1}{m} \cdot 100 , \qquad (1)$$

где m₂ — масса катода после электролиза, г:

т. – масса катода до электролиза, г;

т — масса навески пробы, г.

4.5.2 Расхождения результатов не должны превышать значений, указанных в таблице 2.

Таблица 2

В процентах

Массовая доля медя	Абсолютное допускаемое расхождение		
330000000000000000000000000000000000000	результатов параллельных определения	результатов анализа	
От 0,50 до 1,50 включ.	0,05	0,07	
Св. 1,50 » 3,00 »	0,07	0,10	
» 3,00 » 6,00 »	0.10	0,15	
* 6,00 * 12,00 *	0.15	0,20	

5 Электрогравиметрический метод ускоренного определения меди

5.1 Сущность метода

Метод основан на растворении пробы в смеси азотной, фтористоводородной и серной кислот, электролитическом выделении меди и взвешивании. Определению мешает висмут.

5.2 Аппаратура, реактивы и растворы

Лабораторная установка для электролиза, снабженная устройством для перемешивания электролита (вращающийся анод, магнитная мешалка или барботер).

Электроды Фишера сетчатые платиновые по ГОСТ 6563.

Шкаф сушильный с терморегулятором.

Печь муфельная.

Кислота фтористоводородная по ГОСТ 10484.

Кислота азотная по ГОСТ 4461 плотностью 1,35-1,40 г/см3.

Кислота серная по ГОСТ 4204 плотностью 1,84 г/см3.

Смесь кислот № 1: к 500 см³ воды приливают 300 см³ азотной кислоты и осторожно, порциями 200 см³ серной кислоты, смесь перемешивают и охлаждают до комнатной температуры.

Смесь кислот № 2: к 100 см³ фтористоводородной кислоты осторожно приливают 30 см³ азотной и 20 см³ серной кислоты, смесь перемешивают и охлаждают до комнатной температуры. Смесь готовят и хранят в полиэтиленовой посуде.

Кислота борная по ГОСТ 9656.

Кислота борофтористоводородная: к 280 см³ фтористоводородной кислоты при температуре (10±2) °С добавляют порциями 130 г борной кислоты и перемешивают. Раствор готовят и хранят в полиэтиленовой посуде.

Насыщенный раствор борной кислоты: 60 г борной кислоты растворяют в 1 дм³ горячей воды, раствор охлаждают до комнатной температуры и перемешивают.

Спирт этиловый ректификованный технический по ГОСТ 18300 (10 см³ на одно определение). Гидразин сернокислый по ГОСТ 5841, раствор 100 г/дм³.

5.3 Подготовка к анализу — по 4.3.

5.4 Проведение анализа

5.4.1 Навеску пробы массой 2 г при массовой доле меди менее 1,0 % или 1 г при массовой доле меди более 1,0 % в зависимости от массовой доли кремния растворяют одним из перечисленных способов.

5.4.1.1 При массовой доле кремния менее 1,5 %

Навеску пробы помещают в стеклянный стакан вместимостью 250 см³, приливают 40 см³ смеси кислот № 1, нагревают до начала реакции, затем нагревание прекращают. Когда большая часть

пробы растворится и реакция замедлится, обмывают стенки стакана водой до первоначального объема, приливают 2 см³ борофтористоводородной кислоты при массовой доле кремния до 0,5 %, 5 см³ борофтористоводородной кислоты при массовой доле кремния до 1,5 % и вновь умеренно нагревают до получения прозрачного раствора. Раствор доливают водой до объема 160—170 см³.

5.4.1.2 При массовой доле кремния более 1,5 %

Навеску пробы помещают в стакан из стеклоуглерода или фторопласта вместимостью 100-150 см³ и приливают смесь кислот № 2: 40 см³ для навески пробы 1 г или 60 см³ для навески пробы массой 2 г; смесь кислот приливают сначала по каплям до прекращения бурной реакции, затем — порциями по 3-5 см³.

Содержимое стакана нагревают 10—15 мин, приливают 50 см³ раствора борной кислоты и переводят раствор в стеклянный стакан вместимостью 200—250 см³. Стенки фторопластового стакана обмывают раствором борной кислоты: 50 см³ для навески пробы массой 1 г или 100 см³ для навески пробы массой 2 г и присоединяют к раствору в стеклянном стакане. Содержимое стакана умеренно нагревают до получения прозрачного раствора и доливают водой до объема 160—170 см³.

5.4.1.3 Раствор по 5.4.1.1 или 5.4.1.2 нагревают до температуры 60—70 °С и далее поступают по 4.4.2.

5.5 Обработка результатов — по 4.5.

6 Фотометрический метод определения меди

6.1 Сущность метода

Метод основан на растворении пробы в растворе соляной кислоты, образовании при рН 9 синего комплексного соединения меди с купризоном и измерении оптической плотности раствора при длине волны 595 нм.

6.2 Аппаратура, реактивы и растворы

Спектрофотометр или фотоэлектроколориметр.

Печь муфельная.

Кислота соляная по ГОСТ 3118 плотностью 1,19 г/см3 и растворы 1:1, 1:99.

Кислота серная по ГОСТ 4204 плотностью 1,84 г/см3.

Кислота азотная по ГОСТ 4461 плотностью 1,35-1,40 г/см3.

Аммиак водный по ГОСТ 3760.

Кислота лимонная по ГОСТ 3652, раствор 500 г/дм3,

Натрия гидроокись по ГОСТ 4328, раствор 0,5 моль/дм³.

Кислота фтористоводородная по ГОСТ 10484.

Кислота борная по ГОСТ 9656.

Кислота борофтористоводородная по 5.2.

Буферный раствор натрия борнокислого, pH 9: 13,45 г борной кислоты помещают в стакан вместимостью 500 см³, приливают 350 см³ воды и растворяют при нагревании. Раствор охлаждают до комнатной температуры, переводят в мерную колбу вместимостью 500 см³, приливают 65 см³ раствора гидроокиси натрия, доливают водой до метки и перемешивают.

Индикатор нейтральный красный, раствор 1 г/дм³.

Спирт этиловый ректификованный технический по ГОСТ 18300, раствор 1:1.

Бис-(циклогексанон)-оксалилдигидразон (купризон) [2], раствор 5 г/дм³: 0,25 г купризона помещают в мерную колбу вместимостью 50 см³, растворяют в 40 см³ раствора этилового спирта, доливают раствором спирта до метки и перемешивают.

Медь по ГОСТ 859 марки М00.

Стандартные растворы меди

Раствор А: 1 г меди помещают в высокий химический стакан вместимостью 400 см³, приливают 20 см³ воды и 10 см³ азотной кислоты, накрывают стакан часовым стеклом и растворяют при нагревании.

Раствор выпаривают на водяной бане до начала кристаллизации, приливают 50 см³ воды и растворяют соли при умеренном нагревании. Раствор охлаждают до комнатной температуры, переводят в мерную колбу вместимостью 1000 см³, доливают водой до метки и перемешивают.

1 см³ раствора содержит 0,001 г меди.

Раствор Б: 50 см³ раствора A переносят в мерную колбу вместимостью 1000 см³, доливают водой до метки и перемешивают.

1 см3 раствора содержит 0,00005 г меди.

Раствор В: 10 см³ раствора Б переносят в мерную колбу вместимостью 100 см³, доливают водой до метки и перемешивают.

1 см³ раствора содержит 0,000005 г меди.

Растворы Б и В готовят перед применением.

- 6.3 Проведение анализа
- 6.3.1 Навеску пробы массой в соответствии с таблицей 3, в зависимости от массовой доли кремния, растворяют одним из перечисленных способов.

Таблица 3

Массовая доля меди, %	Масса навески пробы, г	Вместимость мерной колбы, см ³	Объем аликпотной части растнора, см ³	Масса навески пробы в аликвотноя части раствора, см3
От 0,002 до 0,02 включ.	1	100	20	0,2
Св. 0,02 * 0,08 *	1	250	10	0.04
* 0.08 * 0.2 *	1	250	5	0,02
* 0,2 * 0,4 *	1	250	2,5	0,01
» 0,4 » 0,8 »	0,5	250	2,5	0,005

6.3.1.1 При массовой доле кремния менее 1.5 %

Навеску пробы помещают в коническую колбу вместимостью 250 см³ и приливают небольшими порциями 30 см³ раствора соляной кислоты 1:1. После прекращения бурной реакции приливают 2 или 5 см³ борофтористоводородной кислоты (в зависимости от массовой доли кремния), накрывают колбу часовым стеклом или воронкой и продолжают растворение при умеренном нагревании. Затем добавляют по каплям азотную кислоту до полного растворения пробы (приблизительно от трех до двадцати капель, в зависимости от массовой доли меди), обмывают стенки колбы 20—30 см³ воды и кипятят раствор в течение 2—3 мин.

Раствор охлаждают, переводят в мерную колбу вместимостью в соответствии с таблицей 3, доливают водой до метки и перемешивают.

6.3.1.2 При массовой доле кремния более 1,5 %

Навеску пробы помещают в коническую колбу вместимостью 250 см³, приливают небольшими порциями 30 см³ раствора соляной кислоты 1:1 и растворяют пробу при комнатной температуре. После прекращения бурной реакции накрывают колбу часовым стеклом и продолжают растворение при умеренном нагревании. Затем добавляют по каплям азотную кислоту до полного растворения пробы (приблизительно от трех до двадцати капель, в зависимости от массовой доли меди). Раствор осторожно выпаривают до влажных солей, приливают 15 см³ раствора соляной кислоты 1:1, приблизительно 30—40 см³ горячей воды и растворяют соли.

Раствор фильтруют в мерную колбу вместимостью в соответствии с таблицей 3 через фильтр средней плотности («белая лента»), два раза промывают фильтр раствором соляной кислоты 1:99 порциями по 10 см³, собирая фильтрат в ту же колбу (основной раствор).

Фильтр с осадком помещают в платиновый тигель, высушивают, полностью озоляют, не допуская воспламенения, и прокаливают при температуре 500—600 °С в течение 5—10 мин. После охлаждения в тигель добавляют пять капель серной кислоты, 5 см³ фтористоводородной кислоты и по каплям азотную кислоту (приблизительно 1 см³) до получения прозрачного раствора. Раствор выпаривают досуха, охлаждают, приливают к сухому остатку в тигле 5 см³ раствора соляной кислоты 1:1, растворяют остаток, приливают 5 см³ воды и перемешивают. При необходимости раствор фильтруют через маленький плотный фильтр («синяя лента») и присоединяют к основному раствору. Основной раствор в мерной колбе в соответствии с таблицей 3 доливают водой до метки и перемешивают.

- 6.3.2 Аликвотную часть раствора в соответствии с таблицей 3 помещают в мерную колбу вместимостью 50 см³, приливают 2 см³ раствора лимонной кислоты, добавляют одну каплю раствора нейтрального красного и из бюретки медленно, при перемешивании, приливают аммиак до перехода красной окраски индикатора в бледно-желтую (приблизительно 2—3 см³ аммиака) и 1 см³ аммиака в избыток. Затем приливают 5 см³ буферного раствора с рН 9, 1 см³ раствора купризона, доливают водой до метки и перемешивают.
- 6.3.3 Оптическую плотность раствора измеряют через 15 мин при длине волны 595 нм в кювете с толщиной слоя 30 мм. Раствором сравнения служит раствор контрольного опыта, который готовят по 6.3.1.1, 6.3.1.2 и 6.3.2 со всеми реактивами, используемыми в ходе анализа.

Массу меди определяют по градуировочному графику.

6.3.4 Построение градуировочного графика

В семь из восьми мерных колб вместимостью 50 см³ отмеряют 0,5; 1,0; 2,0; 4,0; 6,0; 8,0; 10,0 см³ стандартного раствора В, что соответствует 0,0000025; 0,000005; 0,00001; 0,00002; 0,00003; 0,00004; 0,00005 г меди, в каждую колбу приливают приблизительно по 10 см³ воды, 2 см³ раствора лимонной кислоты и далее продолжают по 6.3.2 и 6.3.3. Раствором сравнения служит раствор, в который не введена медь.

ГОСТ 11739.13-98

По полученным значениям оптической плотности растворов и соответствующим им массам меди строят градуировочный график.

6.4 Обработка результатов

6.4.1 Массовую долю меди X₁, %, вычисляют по формуле

$$X_1 = \frac{m}{m_*} \cdot 100$$
, (2)

где m — масса меди в растворе пробы, найденная по градуировочному графику, г;

т. – масса навески пробы в аликвотной части раствора, г.

6.4.2 Расхождения результатов не должны превышать значений, указанных в таблице 4.

Таблица 4

В процентах

Массован доля меди	Абсолютное допускаемое расхождение		
	результатов параллельных определения	результатов анализа	
От 0,002 до 0,005 включ.	0,001	0,001	
CB. 0,005 * 0,010 *	0,002	0,003	
* 0.010 * 0.030 *	0,003	0,004	
* 0,030 * 0,100 *	0,005	0.007	
» 0.10 » 0.25 »	0,01	0.02	
* 0.25 * 0.40 *	0.03	0,04	
* 0.40 * 0.80 *	0.04	0.06	

7 Атомно-абсорбционный метод определения меди

7.1 Сущность метода

Метод основан на растворении пробы в растворе соляной кислоты и измерении атомной абсорбции меди при длине волны 324.8 нм в пламени ацетилен-воздух.

7.2 Аппаратура, реактивы и растворы

Спектрофотометр атомно-абсорбционный с источником излучения для меди.

Печь муфельная.

Шкаф сушильный с терморегулятором.

Медь по ГОСТ 859 марки М00.

Стандартные растворы меди

Раствор А, готовят по 6.2.

Раствор Б: 10 см³ раствора А переносят в мерную колбу вместимостью 100 см³, доливают водой до метки и перемешивают.

I см³ раствора содержит 0,0001 г меди.

Раствор Б готовят перед употреблением.

Кислота соляная по ГОСТ 3118 плотностью 1,19 г/см3, растворы 1:1 и 1:99.

Алюминий хлористый 6-водный по ГОСТ 3759.

Раствор алюминия 20 г/дм³: 90 г хлористого алюминия растворяют в 200 см³ раствора соляной кислоты 1:1, переводят в мерную колбу вместимостью 500 см³, доливают водой до метки и перемешивают.

Кислота азотная по ГОСТ 4461 плотностью 1,35-1,40 г/см3.

Кислота серная по ГОСТ 4204 плотностью 1,84 г/см3.

Ацетилен по ГОСТ 5457.

Кислота фтористоводородная по ГОСТ 10484.

Водорода пероксид по ГОСТ 10929.

Алюминий по ГОСТ 11069 марки А999.

7.3 Проведение анализа

7.3.1 Навеску пробы массой в соответствии с таблицей 5 помещают в коническую колбу вместимостью 250 см³, приливают 30 см³ воды, небольшими порциями 30 см³ раствора соляной кислоты 1:1 и растворяют пробу сначала при комнатной температуре, затем при умеренном нагревании. В раствор добавляют по каплям 1—2 см³ азотной кислоты, осторожно выпаривают до влажных солей, приливают 20 см³ раствора соляной кислоты 1:1, 50—60 см³ горячей воды, растворяют соли при нагревании, раствор охлаждают и перемешивают.

Таблина 5

Массовая доля меди, %	Масса навески пробы, г	Вместимость мерной колбы, см ³	Объем аликвотнов части раствора, см3	
От 0,005 до 0,05 включ.	1	100	Весь раствор	
Св. 0,05 * 1,0 *	0,25	250	То же	
* 1,0 * 8,0 *	0,25	250	10	

- 7.3.1.1 Если раствор прозрачный, его переводят в мерную колбу вместимостью в соответствии с таблицей 5, доливают водой до метки и перемещивают.
- 7.3.1.2 Если остается осадок, указывающий на наличие кремния, раствор фильтруют в мерную колбу вместимостью в соответствии с таблицей 5 через фильтр средней плотности («белая лента») и промывают фильтр два раза раствором соляной кислоты 1:99 (основной раствор).

Фильтр с осадком помещают в платиновый тигель, высушивают, озоляют, не допуская воспламенения, и прокаливают при температуре 500—600 °С в течение 3—5 мин. После охлаждения в тигель добавляют пять капель серной кислоты, 5 см³ фтористоводородной кислоты и по каплям азотную кислоту (приблизительно 1 см³) до получения прозрачного раствора.

Раствор выпаривают досуха, охлаждают, приливают к сухому остатку в тигле 3 см³ раствора соляной кислоты 1:1, растворяют остаток при нагревании, приливают 5 см³ воды, перемешивают, при необходимости фильтруют через маленький плотный фильтр («синяя лента»), присоединяют к основному раствору, доливают водой до метки и перемешивают.

- 7.3.1.3 При массовой доле меди более 1 % аликвотную часть раствора 10 см³ переносят в мерную колбу вместимостью 100 см³, приливают 8 см³ раствора соляной кислоты 1:1, доливают водой до метки и перемешивают.
- 7.3.2 Раствор контрольного опыта готовят по 7.3.1, используя вместо навески пробы навеску алюминия.
 - 7.3.3 Построение градуировочных графиков
 - 7.3.3.1 При массовой доле меди от 0,005 до 0,05 %

В семь мерных колб вместимостью 100 см³ приливают по 50 см³ раствора алюминия, в шесть из них отмеряют 0,5; 1,0; 2,0; 3,0; 4,0; 5,0 см³ стандартного раствора Б, что соответствует 0,00005; 0,0001; 0,0002; 0,0003; 0,0004; 0,0005 г меди.

7.3.3.2 При массовой доле меди св.0,05 до 1,0 %

В восемь мерных колб вместимостью 100 см^3 приливают по 5 см^3 раствора алюминия, по 6 см^3 раствора соляной кислоты 1:1, в семь из них отмеряют 0.5; 1.0; 2.0; 4.0; 6.0; 8.0; 10.0 см^3 стандартного раствора 6, что соответствует 0.00005; 0.0001; 0.0002; 0.0004; 0.0006; 0.0008; 0.001 г меди.

7.3.3.3 При массовой доле меди св. 1,0 до 8,0 %

В семь мерных колб вместимостью 100 см^3 приливают по 0.5 см^3 раствора алюминия, по 8 см^3 раствора соляной кислоты 1:1, в шесть из них отмеряют 1.0; 2.0; 4.0; 6.0; 8.0; 10.0 см^3 стандартного раствора 6.0, что соответствует 0.0001; 0.0002; 0.0004; 0.0006; 0.0008; 0.001 г меди.

- 7.3.3.4 Растворы по 7.3.3.1—7.3.3.3 доливают в колбах водой до метки и перемешивают.
- 7.3.4 Раствор пробы, раствор контрольного опыта и растворы для построения градуировочного графика распыляют в пламя ацетилен-воздух и измеряют атомную абсорбцию меди при длине волны 324,8 нм.

По полученным значениям атомной абсорбции и соответствующим им массовым концентрациям меди строят градуировочный график в координатах «Значение атомной абсорбции — массовая концентрация меди, г/см³». Раствор, в который не введена медь, служит раствором контрольного опыта при построении градуировочного графика.

Массовую концентрацию меди в растворе пробы и в растворе контрольного опыта определяют по градуировочному графику.

7.4 Обработка результатов

7.4.1 Массовую долю меди X₂, %, вычисляют по формуле

$$X_2 = \frac{(C_1 - C_2) V}{m} \cdot 100 , \qquad (3)$$

где C₁ — массовая концентрация меди в растворе пробы, найденная по градуировочному графику, г/см³;

 C_2 — массовая концентрация меди в растворе контрольного опыта, найденная по градуировочному графику, г/см³;

ГОСТ 11739.13-98

- V объем раствора пробы, см³;
- т масса навески пробы или масса навески пробы в аликвотной части раствора, г.
- 7.4.2 Расхождения результатов не должны превышать значений, указанных в таблице 6.

Таблица 6

В процентах

Массовая доля медя	Абсолютное допускаемое расхождение		
	результатов дараллельных определений	результатов анализа	
От 0,005 до 0,010 включ.	0,002	0.003	
CB, 0,010 » 0,025 »	0,004	0,005	
» 0,025 » 0,050 »	0,008	0,010	
» 0.05 » 0.10 »	0,01	0,02	
* 0,10 * 0,25 *	0,03	0,04	
* 0,25 * 0,50 *	0,04	0,06	
* 0,50 * 1,50 *	0,06	0.07	
* 1,50 * 3,00 *	0,07	0,10	
* 3,00 * 6,00 *	0,10	0,15	
* 6,00 * 8,00 *	0,15	0,20	

ПРИЛОЖЕНИЕ A (справочное)

ВИФАЧТОИКАИА

- ТУ 6-09-2878—84 Кислота хлорная (Уральский завод химических реактивов г. Верхняя Пышма Свердловской обл.)
- [2] ТУ 6-09-14-1380—77 Бис-(циклогексанон)-оксалилдигидразон (купризон) (Черкасский завод химических реактивов г. Черкассы, обл.)

УДК 669.715.001.4:006.354

MKC 77.120.10

B59

ОКСТУ 1709

Ключевые слова: алюминиевые сплавы, методы определения меди, аппаратура, реактивы, растворы, анализ

Редактор В.Н.Копысов
Технический редактор В.Н.Прусакова
Корректор В.С.Черная
Компьютерная верстка И.А. Назейкиной

Изд. лиц. № 02354 от 14.07,2000. Подписано в нечать 09.10,2002. Усл.печ.л. 1,40. Уч.-изд.л. 1,05. Тираж 88 экз. С 7686. Зак. 842.

ИПК Издательство стандартов, 107076 Москва, Колодезный пер., 14 http://www.standards.ru e-mail: info@standards.ru Набрано в Издательстве на ПЭВМ Филиал ИПК Издательство стандартов — тип. "Московский печатник", 103062 Москва, Лялин пер., 6 Плр № 080102