ДРЕВЕСИНА

МЕТОДЫ ОПРЕДЕЛЕНИЯ МОДУЛЯ УПРУГОСТИ ПРИ СТАТИЧЕСКОМ ИЗГИБЕ

Издание официальное

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

ДРЕВЕСИНА

ΓΟCT 16483.9-73*

Методы определения модуля упругости при статическом изгибе

Wood. Methods for determination of modulus of elasticity in static bending Взамен ГОСТ 16483.9-72

Постановлением Государственного комитета стандартов Совета Министров СССР от 23.10.73 № 2364 дата введения установлена

01.07.74

Ограничение срока действия снято по протоколу № 3—93 Межгосударственного Совета по стандартизации, метрологии и сертификации (ИУС 5-6—93)

Настоящий стандарт распространяется на древесину и устанавливает методы определения модуля упругости при статическом изгибе.

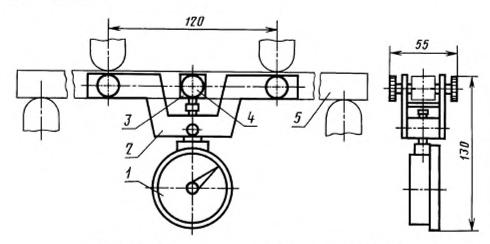
Стандарт соответствует СТ СЭВ 1142—78 и ИСО 3349—75 в части определения модуля упругости при статическом изгибе кондиционированных образцов.

Методы не распространяются на авиационные пиломатериалы и заготовки.

(Измененная редакция, Изм. № 1).

1. МЕТОД ОПРЕДЕЛЕНИЯ МОДУЛЯ УПРУГОСТИ ПРИ СТАТИЧЕСКОМ ИЗГИБЕ

Метод предназначен для определения модуля упругости древесины при кондиционировании образцов по ГОСТ 16483.0—89.

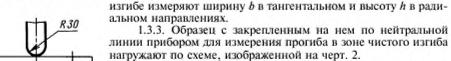

- 1.1. Аппаратура
- 1.1.1. Машина испытательная по ГОСТ 28840—90, обеспечивающая скорость нагружения образца или перемещение нагружающей головки, позволяющая измерять нагрузку с погрешностью не более 1 %.
- 1.1.2. Приспособление, схема которого изображена на черт. 1, или подобное ему, для создания симметричной относительно длины образца зоны чистого изгиба, состоящее из двух опор и расположенных между ними двух нагружающих ножей.

Издание официальное

Перепечатка воспрещена

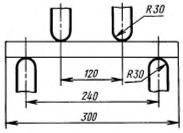
*

^{*} Переиздание (сентябрь 1999 г.) с Изменениями № 1, 2, утвержденными в январе 1980 г., октябре 1988 г. (ИУС 3-80, 1-89)



I — индикатор; Z — держатель, 3 — скоба-упор; 4 — винт; 5 — образец

Черт. 1


Расстояние между центрами опор должно быть 240 мм, а между нагружающими ножами — 1/2 расстояния между центрами опор. Радиус закругления опор и ножей должен быть 30 мм.

- 1.1.3. Прибор для измерения прогиба образца в зоне чистого изгиба, состоящий из следующих
- измерительного устройства линейных перемещений с погрешностью измерения не более 0,001 mm;
- приспособления для крепления устройства по нейтральной оси образца симметрично относительно середины его длины с расстоянием между точками закрепления, равным расстоянию между нагружающими ножами;
- приспособления, закрепляемого по нейтральной оси образца в середине его длины и используемого в качестве начала отсчета прогиба образца.
 - 1.1.4. Штангенциркуль по ГОСТ 166—89 с погрешностью измерения не более 0,1 мм.
 - Аппаратура для определения влажности древесины по ГОСТ 16483.7—71.
 - 1.1.1—1.1.5. (Введены дополнительно, Изм. № 1).
 - 1.2. Подготовка к испытанию
- Образцы изготовляют в форме прямоугольного бруска сечением 20 x 20 мм и длиной вдоль волокон 300 мм.
- 1.2.2. Точность изготовления, влажность и количество образцов должны соответствовать требованиям ГОСТ 16483.0—89.
 - 1.3. Проведение испытания
- 1.3.1. Йспытание проводят при действии изгибающего усилия перпендикулярно радиальной поверхности образца, изгиб тангентальный. Допускается проводить испытания при радиальном изгибе.
- 1.3.2. На середине длины образца измеряют с погрешностью не более 0,1 мм ширину b в радиальном и высоту h в тангентальном направлениях при тангентальном изгибе. При радиальном

Испытание образца выполняют с постоянной скоростью нагружения или постоянной скоростью перемещения нагружающей головки испытательной машины для обеспечения нагружения образца до 800 Н за 30 с. Когда нагрузка достигнет 800 Н, образец плавно разгружают до 200 Н, после чего вновь нагружают до 800 Н и разгружают до 200 Н. При последующих четырех нагружениях в момент достижения нагрузки 300 и 800 Н измеряют в течение не более 10 с прогиб с погрешностью

не более 0,001 мм.

Черт. 2

Если в диапазоне нагрузок от 300 до 800 Н деформация непропорциональна нагрузке, то верхний и нижний пределы нагружения изменяют так, чтобы получаемые величины прогиба были в пределах прямолинейного участка диаграммы «нагрузка-деформация», при этом верхний предел нагружения не должен превышать 50 % от разрушающей нагрузки.

Прямолинейный участок диаграммы определяют по результатам предварительных испытаний

подобных образцов.

При использовании машины с электромеханическим приводом допускается проводить испытания с равномерной скоростью нагружения (1500±300) Н/мин при условии достижения нагрузки 800 Н за 30 с. При этом условии допускается проводить испытания при скорости перемещения нагружающей головки испытательной машины (15±5) мм/мин.

(Измененная редакция, Изм. № 1, 2).

1.3.4. После испытания определяют влажность образцов в соответствии с требованиями ΓΟCT 16483.7—71.

Пробу для определения влажности вырезают длиной 30 мм из середины длины образца.

Минимальное количество испытываемых на влажность образцов должно соответствовать ГОСТ 16483.0-89.

(Измененная редакция, Изм. № 1).

1.4. Обработка результатов

1.4.1. Модуль упругости древесины при кондиционировании образцов (E_w) в ГПа вычисляют по формуле

$$E_W = \frac{3P\beta}{64bh^3f},$$

где p — нагрузка, равная разности между верхним и нижним пределами нагружения, H;

расстояние между опорами;

b — ширина образца, мм;

h — высота образца, мм;

 прогиб образца в зоне чистого изгиба, равный разности между средними арифметическими результатами измерения прогиба при верхнем и нижнем пределах нагружения, мм. Вычисление производят с округлением до 0,1 ГПа.

1.4.2. Модуль упругости (Е_W) в ГПа пересчитывают на влажность 12 % по формулам: для образцов с влажностью меньше предела гигроскопичности

$$E_{12} = \frac{E_W}{1 - \alpha(W - 12)}$$

где E_w — модуль упругости образца с влажностью W в момент испытания, ГПа; α — поправочный коэффициент, равный 0,01 на 1 % влажности;

W — влажность образца в момент испытания, %;

для образцов с влажностью, равной или больше предела гигроскопичности

$$E_{12} = \frac{E_W}{K_{12}^{30}}$$
,

где E_W — модуль упругости образца с влажностью W в момент испытания, ГПа; K_{12}^{30} — коэффициент пересчета при влажности 30 %, равный: 0.80 — для хвойных пород; 0.89 для кольцесосудистых пород; 0,77 — для бука; 0,82 — для березы и других рассеяннососудистых пород.

Вычисление производят с округлением до 0,1 ГПа.

1.4.3. Статистическую обработку опытных данных выполняют по ГОСТ 16483.0—89.

1.4.4. Результаты испытаний и расчетов заносят в протокол испытаний, форма которого приведена в приложении 1.

2. МЕТОД ОПРЕДЕЛЕНИЯ МОДУЛЯ УПРУГОСТИ ПРИ СТАТИЧЕСКОМ ИЗГИБЕ НЕКОНДИЦИОНИРОВАННЫХ ОБРАЗЦОВ

2.1. Аппаратура по п. l.l.

2.2. Подготовка к испытанию

2.2.1. Образцы изготовляют по п. 1.2.1.

2.2.2. Точность изготовления и количество образцов должны соответствовать требованиям ГОСТ 16483.0-89.

- 2.2.3. Образцы должны находиться до испытания в условиях, исключающих изменение их начальной влажности
- 2.3. Проведение испытания попп. 1.3.1—1.3.3. После испытания определяют влажность каждого образца с погрешностью не более 1 % по ГОСТ 16483.7—71. Пробу на влажность длиной 30 мм вырезают из середины длины образца. Влажность образцов из свежесрубленной древесины не определяют.
 - 2.4. Обработка результатов
- 2.4.1. Модуль упругости образца с влажностью в момент испытания (E_W) в ГПа вычисляют по формуле

$$E_W = \frac{3P\beta}{64bh^3f},$$

где р - нагрузка, равная разности между верхним и нижним пределом нагружения, Н;

1 — расстояние между опорами;

b — ширина образца, мм;

h — высота образца, мм;

f — прогиб образца в зоне чистого изгиба, равный разности между средними арифметическими результатами измерения прогиба при верхнем и нижнем пределах нагружения, мм. Вычисление производят с округлением до 0.1 ГПа.

2.4.2. Модуль упругости пересчитывают на влажность 12 % (E_1) в ГПа по формуле

$$E_{12} = \frac{E_W}{K_{12}^W} ,$$

где $K_{12}^{B'}$ — коэффициент пересчета, определяемый по таблице при известной плотности древесины.

Влаж- ность, %	Коэффициент пересчета $K_{12}^{W'}$ при плотности ρ_{12} , $\kappa r/m^3$											
	400	450	500	550	600	650	700	750	800	850	900	
5	1,095	1,090	1,080	1,075	1,069	1,061	1,055	1,049	1,044	1,037	1,03	
6	1,085	1,080	1,072	1,066	1,061	1,055	1,049	1,044	1,039	1,034	1,02	
7	1,075	1,070	1,065	1,057	1,052	1,048	1,042	1,036	1,033	1,029	1,02	
8	1,060	1,058	1,055	1,050	1.044	1,039	1,035	1,031	1,027	1,024	1,02	
9	1,047	1,046	1,040	1,038	1,035	1,030	1,027	1,025	1,021	1,019	1,01	
10	1,034	1,030	1,028	1.025	1,022	1,020	1,018	1,016	1,014	1,012	1,01	
11	1,017	1,015	1,014	1,013	1,012	1,011	1,010	1,009	1,007	1,005	1,00	
12	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,000	1,00	
13	0.985	0.986	0.987	0.988	0.989	0.990	0.991	0,991	0,992	0,993	0.99	
14	0,965	0.968	0,971	0.974	0,977	0,979	0.981	0.982	0,983	0.985	0.98	
15	0,948	0,950	0,955	0,959	0.963	0,967	0.970	0,973	0,975	0,978	0.98	
16	0,930	0.935	0,940	0,945	0,950	0,955	0,960	0.963	0.967	0,971	0.97	
17	0,910	0,918	0,925	0,931	0,937	0,945	0,950	0.954	0,960	0,964	0.96	
18	0.895	0,900	0,910	0,916	0,925	0,932	0,939	0.945	0,951	0,957	0.96	
19	0.875	0.885	0,894	0,901	0.912	0,920	0.927	0.935	0,942	0,950	0.95	
20	0.858	0.870	0,880	0,890	0.900	0,910	0.917	0,925	0,934	0.942	0.95	
21	0,840	0,850	0,865	0,876	0,889	0.899	0.907	0.915	0,926	0,934	0.94	
22	0,825	0.840	0,851	0,864	0,877	0,890	0,900	0.909	0,918	0,928	0.93	
22 23	0,810	0,823	0.838	0,851	0,867	0,880	0,891	0,901	0,912	0,922	0.93	
24	0,794	0,810	0,825	0,840	0,856	0,870	0,881	0,892	0,904	0,915	0,92	
25	0,780	0,796	0,812	0,829	0,846	0,861	0,872	0,887	0,900	0,911	0.92	
26	0,765	0,782	0,800	0,816	0,836	0,851	0,865	0,880	0,892	0,904	0,91	
27	0,750	0.770	0,789	0,806	0,826	0,842	0,857	0,872	0,887	0,900	0.91	
28	0,740	0,760	0.777	0.798	0.817	0.835	0,851	0,866	0.881	0,895	0.90	
29	0,730	0,750	0,767	0,786	0.809	0,827	0,844	0,861	0,877	0,891	0.90	
≥30	0,715	0,735	0,756	0,776	0.800	0,820	0,839	0,854	0,871	0,885	0.90	

Примечание. Коэффициенты пересчета K_{12}^W для промежуточных значений плотности определяют линейным интерполированием коэффициентов K_{12}^W для смежных значений плотности.

Пример. Коэффициент пересчета K_{12}^{30} для породы с плотностью 650 кг/м³ равен 0,820. Коэффициент K_{12}^{30} для породы с плотностью 700 кг/м³ равен 0,839. Коэффициент K_{12}^{30} для породы с плотностью 670 кг/м³ определяют по формуле

$$K_{12}^{30} = 0.820 + (0.839 - 0.820) \cdot \frac{670 - 650}{50} = 0.828.$$

В случае, если определение плотности не производилось, модуль упругости (E_{12}) вычисляют в ГПа по формуле

$$E_{12} = \frac{E_W}{1 - \alpha(W - 12)},$$

где α — поправочный коэффициент, равный: 0.019 — для хвойных пород; 0.012 — для кольцесосудистых пород; 0.013 — для бука; 0.010 — на 1~% влажности — для березы и других рассеяннососудистых пород.

Вычисление производят с округлением до 0,1 ГПа.

- 2.4.3. Статистическую обработку опытных данных выполняют по ГОСТ 16483.0-89.
- 2.4.4. Результаты испытаний и расчетов заносят в протокол испытаний, форма которого приведена в приложении 2.

ПРИЛОЖЕНИЕ 1 Рекомендуемое

ПРОТОКОЛ определения модуля упругости при статическом изгибе

Порода Скорость на Степень насі	ружения, Н	I/мин		4	Темп	ература возд	уха Ө, °С	
Маркиров-		оперечного бразца, мм	Отсчет по прогибомеру при нагрузке Н		Влажность	Модуль упругости, ГПа		Примечание
ка	ь	h	300	800	W. %	E_{W}	E ₁₂	
-								
	19	9 г.				Поли	ись	

ПРОТОКОЛ определения модуля упругости при статическом изгибе некондиционированных образцов

Порода					Температура воздуха Ө, °С							
Скорость	нагружения	, Н/мин			Стег	іень насыщ	енности в	оздуха ф, %	5			
Вид изгиб	a		-									
Марки ровка		оперечного бразца, мм	Отсчеты по прогибомеру при нагрузке, Н		Влажность W, %	Коэффи- циент пересчета	Модуль упругости, ГПа		Примеча- ние			
	ь	h	300	800		K 112	E_{W}	E_{12}				
« »		19 r.					Полпис					

ПРИЛОЖЕНИЕ З Справочное

Информационные данные о соответствии ГОСТ 16483.9-73 и СТ СЭВ 1142-78

Разд. 1 ГОСТ 16483.9-73 соответствует СТ СЭВ 1142-78.

ПРИЛОЖЕНИЕ 3. (Введено дополнительно, Изм. № 1).

Редактор В.Н.Копысов
Технический редактор Л.А.Куннецова
Корректор В.С.Черная
Компьютерная перетка А.Н. Золотаревой

Изд. лиц. № 021007 от 10.08.95. Сдано в набор 25.08.99. Подписано в печать 23.09.99. Усл.печ.л. 0,93. Уч.-изд.л. 0,65. Тираж 137 экз. С 3732. Зак. 784.

ИПК Издательство стандартов, 197076, Москва, Колодезный пер., 14
Набрано в Издательстве на ПЭВМ
Филиал ИПК Издательство стандартов — тип. "Московский печатник", Москва, Лялин пер., 6
Пар № 080102