ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССІ

ФОТОУМНОЖИТЕЛИ

Метод измерения изменения времени прохождения сигнала в зависимости от положения

освещенного участка фотокатода

Photomultipliers. Method of measuring variation of signal transit time in dependence of the position of illuminated part of the photocathode area

OKII 63 6720

FOCT

11612.14-75*

Взамен

FOCT 11612—65

в части разброса
времени пролета
фотоэлектронов
по фотокатоду

Постановлением Государственного комитета стандартов Совета Министров СССР от 24 февраля 1975 г. № 500 срок введения установлен

c 01.01.77

Проверен в 1985 г. Постановлением Госстандарта от 11.07.85 № 2187 срок действия продлен

до 01.07.90

Несоблюдение стандарта преследуется по закону

Настоящий стандарт распространяется на фотоумножители с числом каскадов более одного и устанавливает метод косвенного измерения изменения времени прохождения сигнала в зависимости от положения освещенного участка фотокатода.

Стандарт полностью соответствует Публикации МЭК 306—4. Общие требования при измерении и требования безопасности—

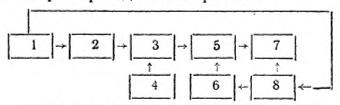
по ГОСТ 11612.0—81.

(Измененная редакция, Изм. № 1).

1. ПРИНЦИП ИЗМЕРЕНИЯ

 1.1. Метод основан на регистрации временных интервалов между опорным импульсом и импульсом тока анода фотоумножителя.

Издание официальное


*

Перепечатка воспрещена

 Переиздание (июль 1986 г.) с Изменением № 1, утвержденным в июле 1985 г. (ИУС 10—85)

2. АППАРАТУРА

Измерения проводят на установке, электрическая структурная схема которой приведена на чертеже.

1—импульсный источник света; 2—ослабитель светового потока; 3—светонепроницаемая камера с фотоумножителем; 4—источник питания фотоумножителя с делителем напряжения (или отдельные источники питания электродов) с вольтметром контроля режима работы; 5—широкополосный тройник; 6—линия задержки: 7—осциллограф; 8—широкополосный тройник

 Импульсный источник света и ослабитель светового потока должны соответствовать требованиям ГОСТ 11612.0—81.

Диаметр светового пятна не должен превышать 5 % диаметра фотокатода.

Для фотокатодов диаметром менее 20 мм диаметр светового пятна должен быть в пределах 0,9—1,1 мм.

Длительность светового импульса на уровне 0.5 должна быть не более 1/3 ожидаемой длительности импульса тока анода фотоумножителя на уровне 0.5.

Световой импульс должен обеспечивать амплитуду импульса тока анода, указанную в стандартах или технических условиях на фотоумножители конкретных типов.

2.3. Светонепроницаемая камера, источник питания с делителем напряжения (или отдельные источники питания электродов) с вольтметром контроля режима работы должны соответствовать требованиям ГОСТ 11612.0—81.

Соотношение сопротивлений резисторов делителя должно соответствовать заданному распределению напряжений с погрешностью в пределах 5%.

Если в стандартах или технических условиях на фотоумножители конкретных типов допускается проводить регулировку резисторов делителя напряжения питания фотоумножителя, то ее проводят перед измерением, добиваясь при этом минимального времени нарастания и минимальной длительности импульса сигнала на выходе фотоумножителя.

2.4. Верхняя граничная частота полосы пропускания широкополосных тройников, линии задержки и осциллографа должна удовлетворять неравенству $f_{\rm rp} \gg \frac{1}{\tau_{\rm H0,5}}$, где $\tau_{\rm H0,5}$ —ожидаемая длительность импульса тока анода на уровне 0,5.

Осциллограф должен иметь погрешность измерения временных интервалов и амплитуды импульса тока в пределах $\pm 10 \%$.

3. ПОДГОТОВКА И ПРОВЕДЕНИЕ ИЗМЕРЕНИЙ

3.1. Устанавливают напряжение питания фотоумножителя, обеспечивающие световую анодную чувствительность, указанную в стандартах или технических условиях на фотоумножители конкретных типов.

 З.2. Линию задержки выбирают таким образом, чтобы опорный импульс на экране осциллографа был расположен между крайни-

ми положениями импульсов анодного тока.

При этом длительность развертки должна обеспечивать измерение ожидаемого времени прохождения сигнала.

3.3. Освещают один из заданных участков фотокатода и полу-

чают на экране осциллографа опорный импульс тока анода.

3.4. С помощью ослабителя светового потока световые импульсы устанавливают такими, чтобы амплитуда импульсов тока анода была равна указанной в стандартах или технических условиях на фотоумножители конкретных типов.

3.5. Отмечают уровень 0,5 амплитуды импульса тока анода и

опорного импульса.

Измеряют интервал времени между фронтами опорного импульса и импульса тока анода на этом уровне.

 Освещают последовательно другие участки фотокатода и выполняют операции по пп. 3.4—3.5.

4. ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЯ

4.1. Из полученных данных определяют максимальную разность времени прохождения сигнала при освещении различных участков фотокатода.

5. ПОКАЗАТЕЛИ ТОЧНОСТИ ИЗМЕРЕНИЯ

5.1. Погрешность измерения изменения времени прохождения сигнала в зависимости от положения освещенного участка фотокатода должна находиться в интервале $\pm 10~\%$ с установленной вероятностью 0.95.

Закон распределения погрешности — нормальный.

Разд. 1-5. (Измененная редакция, Изм. № 1).

ПРИЛОЖЕНИЕ. (Исключено, Изм. № 1).