

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

КИСЛОТА ОРТОФОСФОРНАЯ ТЕРМИЧЕСКАЯ

ТЕХНИЧЕСКИЕ УСЛОВИЯ

ГОСТ 10678-76

Издание официальное

E

53 6-92

ИЗДАТЕЛЬСТВО СТАНДАРТОВ Москва

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

КИСЛОТА ОРТОФОСФОРНАЯ ТЕРМИЧЕСКАЯ

Технические условия

Thermal orthophosphoric acid. Specifications ГОСТ 10678—76

OKIT 21 2141

Срок действия с 01.01.77

c 01.01.77

Настоящий стандарт распространяется на термическую ортофосфорную кислоту, получаемую гидратацией фосфорного ангидрида, образующегося при сжигании желтого фосфора.

Термическая ортофосфорная кислота предназначается для хи-

мической пищевой и других отраслей промышленности.

Настоящий стандарт устанавливает требования к термической ортофосфорной кислоте, изготовляемой для нужд народного хозяйства и для поставки на экспорт.

Требования настоящего стандарта являются обязательными.

(Измененная редакция, Изм. № 6).

I. МАРКИ И ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

 1.1а. Термическая ортофосфорная кислота должна быть изготовлена в соответствии с требованиями настоящего стандарта по технологическому регламенту, утвержденному в установленном порядке.

1.1а. (Введен дополнительно, Изм. № 3).

 В зависимости от области применения термическая ортофосфорная кислота должна выпускаться следующих марок:

A — пищевая;

Издание официальное

Перепечатка воспрещена

E

© Издательство стандартов, 1976

Издательство стандартов, 1993
 Переиздание с изменениями

C: 2 FOCT 10678-76

 Б — техническая, предназначенная для производства реактивной и пящевой фосфорных кислот, технических фосфорных солей, кормовых фосфатов, удобрений и других целей. (Измененная редакция, Изм. № 3).

1.2. По физико-химическим показателям термическая ортофосформая кислота, должна соответствовать нормам, указанным в табл. 1.

Таблица І

	Норма для марки			
¹ Наяменование цоказателя	9KII 21 2141 0209	ОКП 21 2141 0300		Метол, анализа
		1-й сорт ОКП 21 2141 0130	2-A copt OKII 21 2141 0140	
Внешний вид Мкссовая до- в ортофосфорной	Бесцает- ная жид- кость про- зрачная в слое 15— 20 мм при рассматри- вании на белом фоне	Бесцвет- ная или со слабо-жел- тым оттен- ком жнд- кость в слое 15— 20 мм при рассматри- ваема фоне	Бесцвет- ная или ок- рашенная жидкость с оттенком от слабо-жел- того до ко- ричневого, не прозрач- ная в слое 15 ~20 мм при рас сматрива- нии на бе- лом фонс	Визуально По п. 3.4
кислоты (Н ₃ РО ₄), %, не менее 3. Массовая до-	73	73	73	. По ГОСТ 24024.6— 80 и п. 3.6 настояще
яя хлоридов, %. не более 4. Массовая до-	0,005	0,01	0,02	то стандарта По ГОСТ 24024.12— 81 и п 3.7 кастояще
ля сульфатов, %, не более 5. Массовая до	0,010	- 0,015	0,020	го стандарта По п. 3.8
дя витратов, %, не более 6. Массовая до-	0,0003	0.0005	0100,0	По ГОСТ 24024.11— 81 и п. 3.9 настояще
ия железа, %, не более	0,005	0,010	0,015	го стандарта

	H	орма для мар	Метод анализа	
Навменование показателя	А ОКП .21 2141 (Q0)	OKH 21 2141 0100		
		1-й сорт ОКП 21 2141 0130	2-fi copy OKII 21 2141 0140	
7 Массовая до- ля тяжелых ме- таллов сероводо родной группы				По ГОСТ 24024.7— 80 и п. 3.10 настояще- го стандарта
(Pb). %, не бо- лее 8. Массовая до-	0,0005	0,002	0,005	По ГОСТ 24024.10— 81 и в. 3.11 настояще-
ия мышелка, %, не более 9. Массовая до-	1000,0	0,006	0,008	го стандарта По п. 3.12
жа восстанавли- вающих веществ			He nop-	
Н ₂ РО ₅ , %, не бо- лее 10. Наличие ме- тафосфорной ьис-	0.1 Выдеря	0,2 кивает испы	мируется	По п. 3.13
лоты (НРО _з) 11 Массовая	Выдерживает	испытанне	1	По п. 3.14
доля взвешенных частиц, %, не бо- лее 12. Наличие желтого фосфира (P4)	Выдер- живает испытание	Не нор	0,3 мируется	По п. 315

Примечания:

 По требованию потребителя ортофосфорная кислота марки Б может поставляться с массовой долей ортофосфорной кислоты 78—80%.

1а. Показателя 3, 4, 5, 7, 10 для кислоты марки Б определяются по требо-

ванию потребителя.

2. При применении ортофосфорной кислоты для производства удобрений

в марке Б показатели подпунктов 3-11 таблицы не определяются.

2а. По согласованию с потребителем для производства товаров народного потребления ортофосформая кислота марки Б может поставляться с массовой долей ортофосформой кислоты не менее 43%.

3. По требованию потребителя ортофосфорная инслота марки Б 2-го сорта

должна быть отфильтрована от взвешенных частиц до их полного удаления.

4. Исключен.

 Массовая доля восстанавливающих веществ в ортофосфорной кислоте I-го сорта нормируется только для продукта, используемого в производстве технических солей и кормовых фосфатов. В ортофосфорной кислоте марки Б, используемой в производстве кормовых фосфатов, массовая доля фтора должна быть не более 0.1%; для производства химического воложна массовая доля восстанавливающих веществ — не более 0.1%.

(Измененная редакция, Изм. № 3, 4, 6). 1.3. (Исключен, Изм. № 4).

1а. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ-

1а.1. Термическая ортофосфорная кислота пожаро- и вэрывобезопасна, агрессивная жидкость, с водой смешивается в любых соотношениях, является водоотнимающим средством. При попадании на кожу вызывает ожоги и воспалительные заболевания кожи. Туман фосфорной кислоты вызывает атрофические процессы слизистой оболочки носа.

 Работа с кислотой должна проводиться в специальной одежде и специальной обуви в соответствии с правилами, утверж-

денными в установленном порядке.

1а.3. Для защиты органов дыхания от тумана фосфорной кислоты необходимо пользоваться респираторами ШБ-1 «Лепесток» или «Астра-2».

Разд. 1а. (Введен дополнительно, Изм. № 4).

2. ПРАВИЛА ПРИЕМКИ

Термическая ортофосфорная кислота должиа поставляться партиями. Партией считают количество однородного по своим качественным показателям продукта, сопровождаемого одним документом о качестве, но не более 60 т. При отгрузке продукта в цистернах каждую цистерну считают за рартию.

Допускается изготовителю результат анализа продукта сменной или суточной выработки распространять на все формируемые

из нее партии.

Документ о качестве продукта должен содержать:

наименование предприятия-изготовителя или его товарный знак; наименование продукта;

марку и сорт;

номер партии и количество мест в партии;

массу брутто и нетто;

дату изготовления;

результаты проведенных анализов или подтверждение о соответствии продукта требованиям настоящего стандарта;

обозначение настоящего стандарта.

(Измененная редакция, Изм. № 4, 6).

2.2. Для контроля качества термической ортофосфорной кисло-ты пробы отбирают от каждой цистерны или контейнера, или ем-кости, 10% бутылей или канистр, но не менее чем от трех бутылей или канистр при малых партиях.

(Измененная редакция, Изм. № 3, 4, 6).

2.3. При получении неудовлетворительных результатов анализа хотя бы по одному из показателей проводят повторную проверку по удвоенной выборке от той же партии. Результаты повторного анализа являются окончательными и распространяются на всю партию.

3. МЕТОДЫ АНАЛИЗА

 Точечную пробу из бутылей и канистр отбирают стеклян-ной трубкой с оттянутым носиком. Взятые пробы тщательно переной труокой с отгинутым носкоом. Взятые просы падтельно пере-мещивают и отбирают среднюю пробу, которую помещают в чис-тую сухую склянку с притертой пробкой вместимостью 0,5 дм³. Общая масса средней пробы не должна быть менее 0,5 кг. Точечную пробу термической ортофосфорной кислоты из цис-терны, контейнера или на емкости отбирают специальным пробо-

отборником, изготовленным из спецстали, прикреплениым к стальной цепи, или автоматическим пробоотборичком, установленным на линии заполнения хранилища или цистерны. Отбор проб проводят из трех разных мест по высоте: вблизи дна, из середины и верхнего слоя, или по всей высоте налива цистерны. Общая масса средней пробы должна быть не менее 1 кг. Пробу разливают в две чистые сухие склянки с притертыми пробками вместимостью 0.5 дм³ каждая.

(Измененная редакция, Изм. № 3, 4, 6).

3.2. На каждую склянку накленвают этикетку с обозначением: наименования предприятия-изготовителя, наименования продукта, марки и сорта, даты отбора пробы, фамилии пробоотборщика.

3.3. Внешний вид термической ортофосфор-

ной кислоты определяют визуально
3.4. Определение массовой доли ортофосфорной кислоты (НаРО4)

3.4.1. Средства измерения, реактивы и растворы: кислота лимонная по ГОСТ 3652—69, раствор концентрации

с (С₆H₈O₇·H₂O) = 0.1 моль/дм³; натрия гидроокись по ГОСТ 4328—77; растворы концентрации с (NaOH) = 0.1 моль/дм³ (0.1 н.) и с (NaOH) = 0.2 моль/дм³ (0.2 н.); готовят по ГОСТ 25794.1—83; натрий фосфорно-кислый двузамещенный по ГОСТ 4172—76,

раствор концентрации $c(Na_2HPO_4 \cdot 12H_2O) = 0.2$ моль/дм³;

тимол;

бромкрезоловый зеленый, 0,2%-ный раствор, готовят следующим образом: 0,2 г бромкрезолового зеленого растворяют в 6 см³ раствора гидроокиси натрия концентрации c(NaOH) = 0,1 моль//дм³, прибавляют 5 см³ спирта и разбавляют водой до 100 см³:

спирт этиловый ректификованный технический по ГОСТ

18300-87;

вода дистиллированная по ГОСТ 6709-72:

буферная смесь с показателем pH 4,6; раствор готовят следующим образом: в коническую колбу вместимостью 250 см³ вводят бюреткой 9,35 см³ раствора двузамещенного фосфорно-кислого натрия, 10,65 см³ раствора лимонной кислоты, 70 см³ воды и 0,5 см³ индикатора бромкрезолового зеленого. Проверяют pH смеси на pH-метре.

Для предохранения от развития бактерий буферную смесь стерилизуют нагреванием при 60—70°С и добавляют 0,01 г тимола. Раствор перемешивают, плотно закрывают резиновой пробкой и

сохраняют в темном месте;

рН-метр со стеклянным и каломельным электродами;

мешалка магнитная;

весы лабораторные общего назначения по ГОСТ 24104—88 2-го класса точности с наибольшим пределом взвешивания 200 г;

бюретки, пипетки по ГОСТ 20292—74, пробирки, колбы мерные, цилиндры мерные по ГОСТ 1770—74 или аналогичного типа:

допускается применение другой аппаратуры с аналогичными техническими и метрологическими характеристиками.

3.4.2. Проведение анализа

10 г анализируемой кислоты взвешивают (результат взвешивания в граммах записывают с точностью до четвертого десятичного знака), растворяют в воде в мерной колбе вместимостью 250 см³, перемешивают, доводят объем раствора водой до метки и снова перемешивают. 25 см³ полученного раствора пипеткой переносят в коническую колбу вместимостью 250 см³ или стаканчики вместимостью 200 см³, добавляют 25 см³ воды и перемешивают. При потенциометрическом определении устанавливают колбу с раствором на рН-метре и проводят титрование анализируемой кислоты раствором гидроокиси натрия до рН 4,6 при непрерывном перемешивании с помощью магнитной мешалки по инструкции, прилагаемой к применяемому прибору.

Для титрования по индикатору к раствору прибавляют 0,5 см³бромкрезолового зеленого и титруют раствором гидроокиси натрия до перехода окраски раствора из желтой в зеленую и далее в зелено-голубую, совпадающую с окраской раствора буферной смеси. 3.4.3. Обработка результатов

Массовую долю ортофосфорной кислоты (H₃PO₄) (X) в процентах вычисляют по формуле

$$X = \frac{V \cdot 0.0196 \cdot 250 \cdot 100}{25 \cdot m}$$

где V — объем раствора гидроокиси натрия концентрации точно 0.2 моль/дм³, израсходованный на титрование, см³;

т — масса навески анализируемой кислоты, г;

0,0196 — масса ортофосфорной кислоты, соответствующая 1 см³ раствора гидроокиси натрия концентрации точно 0.2 моль/дм³.

За результат анализа принимают среднее арифметическое двух параллельных определений, допускаемые расхождения между которыми при доверительной вероятности P=0,95 не должны превышать 0,2%.

Допускается определение массовой доли ортофосфорной кислоты по ГОСТ 6552—80.

3.5. Приготовление раствора для определения

примесей

25 г отфильтрованной от примесей анализируемой кислоты взвешивают (результат взвешивания в граммах записывают с точностью до второго десятичного знака), растворяют в дистиллированной воде (ГОСТ 6709—72) в мернов колбе вместимостью 250 см³, доводят объем раствора водой до метки и перемешивают (раствор 1).

3.4.1—3.5. (Измененная редакция, Изм. № 4, 6).

3.6. Определение массовой доли хлоридов

3.6.1. Средства измерения, реактивы и рестворы:

кислота азотная по ГОСТ 4461—77, х. ч., раствор с массовой долей азотной кислоты 25%:

кислота ортофосфорная по ГОСТ 6552--80, х.ч., раствор готовят следующим образом: 50 г кислоты взвешивают (результат язвешивания в граммах записывают с точностью до второго десягичного знака), помещают в мерную колбу вместимостью 250 см³ и доводят объем раствора водой до мегки;

серебро азотно-кислое по ГОСТ 1277 75, раствор концентра-

или $c(AgNO_3) = 0.1$ моль/дм³;

раствор, содержащий 1 мг хлорида в 1 см³, готовят по ГОСТ 4212—76 (раствор А); 10 см³ раствора А номещают в мерную колбу вместимостью 1 дм³, доводят объем раствора водой до метки и тщательно перемешивают (раствор Б, свежеприготовленный);

вода дистиллированная по ГОСТ 6709 72;

колориметр фотоэлектрический концентрационный типа КФК-2 или другой прибор с аналогичными метрологическими характеристиками;

весы лабораторные общего назначения по ГОСТ 24104-88

2-го класса точности с наибольшим пределом взвешивания 200 г; бюретки, пипетки по ГОСТ 20292—74, пробирки, колбы мерные цилиндры мерные по ГОСТ 1770—74 или аналогичного тима;

допускается применение другой аппаратуры с аналогичными техническими и метрологическими характеристиками. (Измененная редакция, Изм. № 4, 6).

3.6.2. Построение градуировочного графика

Для построения градуировочного графика готовят серию образцовых растворов: в мерные колбы вместимостью 50 см³ каждая вносят 0; 2,5; 5; 7,5; 10, 12; 15 см³ раствора Б, что соответствует 0; 25; 50; 75; 100; 120; 150 мкг хлора.

В каждый раствор прибавляют 25 см³ воды, 2,5 см³ раствора ортофосфорной кислоты, 0,5 см³ раствора азотной кислоты и 1 см³ азотно-кислого серебра, доводят объем раствора водой до метки и перемешивают.

Через 5 мин измеряют оптические плотности образцовых растворов, используя в качестве раствора сравнения образцовый рас-

твор, не содержащий хлориды.

Измерение оптической плотности растворов проводят по отношению к раствору сравнения в кюветах с толщиной поглощающе-го свет слоя 50 мм на фотоэлектроколориметре при длине волны (490±10) нм.

По полученным данным значений оптических плотностей строят градуировочный график, откладывая по оси абсцисе содержащиеся в образцовых растворах массы хлора в микрограммах, по оси ординат -- соответствующие им значения оптических плотностей.

(Измененная редакция, Изм. № 6).

3.6.3. Проведение анализа

5 см³ раствора I, приготовленного по п. 3.5, помещают в мерную колбу вместимостью 50 см³, прибавляют 25 см³ воды, 0,5 см³ раствора азотной кислоты, I см³ азотно-кислого серебра, доводят объем раствора водой до метки и неремешивают.

Через 5 мин раствор фотометрируют по п. 3.6.2.

3.6.4. Обработка результатов

Массовую долю хлоридов (Х1) в процентах вычисляют по формуле

$$X_1 = \frac{m_1 \cdot 250 \cdot 100}{m \cdot 5 \cdot 10^6}$$

где m₁ — масса хлоридов, найденная по градуировочному графику, мкг;

т — масса навески анализируемой кислоты, г.

За результат анализа принимают среднее арифметическое двухпараллельных определений, допускаемые расхождения между которыми при доверительной вероятности P=0,95 не должны превышать 0,0005%.

(Измененная редакция, Изм. № 3, 4, 6).

3.7 Определение массовой доли сульфатов

3.7.1. Средства измерения, реактивы и растворы:

кислота ортофосфорная по ГОСТ 6552—80, х. ч., раствор; готовят следующим образом: 75 г ортофосфорной кислоты взвешивают (результат взвешивания в граммах записывают с точностью до второго десятичного знака), помещают в мерную колбу вместимостью 250 см³ и доводят водой до метки;

барий хлористый по ГОСТ 4108-72, х. ч., раствор с массовой

долей хлористого бария 10%;

крахмал растворимый по ГОСТ 10163—76, раствор с массовой долей крахмала растворимого 1%, свежеприготовленный и про-

фильтрованный;

раствор, содержащий 1 мг SO₄²- в 1 см³, готовят по ГОСТ 4212—76 (раствор A), 20 см³ раствора А помещают в мерную колбу вместимостью 1 дм³, доводят объем раствора волой до метки, тщательно перемешивают (раствор Б, свежеприготовленный);

I см³ раствора Б содержит 20 мкг SO₄²-; вода дистиллированная по ГОСТ 6709—72;

колориметр фотоэлектрический концентрационный типа КФК-2 или другой прибор с аналогичными метрологическими характеристиками:

весы лабораторные общего назначения по ГОСТ 24104—88 2-го класса точности с наибольшим пределом взвешивания 200 г;

бюретки, пипетки по ГОСТ 20292—74, пробирки, колбы мерные, цилиндры мерные по ГОСТ 1770—74 или аналогичного типа;

допускается применение другой аппаратуры с аналогичными техническими и метрологическими характеристиками.

(Измененная редакция, Изм. № 4, 6).

3.7.2 Построение градуировочного графика

Для построения градуировочного графика готовят серию образцовых растворов; в мерные колбы вместимостью 25 см³ вносят 1,25; 2,5; 3,75; 5; 7,5 см³ раствора Б, что соответствует 25; 50; 75; 100; 150 мкг SO_4^{2-} .

В каждый раствор прибавляют 8 см³ раствора ортофосфорной кислоты, 3 см³ крахмала и тщательно перемешивают. Затем при-

.бавляют 5 см3 хлористого бария, доводят объем раствора водой до

метки и снова перемешивают.

Одновременно готовят раствор сравнения, не содержащий SO₄². Для этого в мерную колбу вместимостью 50 см³ прибавляют в удвоенном количестве и в том же порядке все реактивы, как и к образцовым растворам.

Через 30 мин измеряют оптические плотности образцовых рас-

через 30 мни измеряют оптические плотности ооразцовых растворов по отношению к раствору сравнения. Измерение производят в кювете с толщиной поглощающего свет слоя 50 мм на фотоэлектроколорнметре ФЭК-56 со светофильтром № 5 (490 нм). По полученным данным оптических плотностей строят градуировочный график, откладывая по оси абсцисс содержащееся в образцовых растворах массы SO_4^{2n} в микрограммах, по оси ординат – соответствующие им значения оптических плотностей.

3.7.3. Проведение анализа

3.7.3. Проведение анализа
5 см³ раствора 1, приготовленного по п. 3.5, помещают в мерную колбу вместимостью 25 см³, прибавляют 6,5 см³ раствора ортофосфорной кислоты, 3 см³ раствора крахмала, 3 см³ воды и тщательно перемешивают. Затем к раствору прибавляют 5 см³ хлористого бария, доводят объем раствора водой до метки, закрывают колбу и снова перемешивают.
Через 30 мин раствор фотометрируют по п. 3.7.2.
3.7.4. Обработка результатов
Массовую полю сульфатов (К.) в процентах вышеляют по формассовую полю сульфатов (К.)

Массовую долю сульфатов (Х2) в процентах вычисляют по формуле

$$X_2 = -\frac{m_1 \cdot 250 \cdot 100}{m_1 \cdot 5 \cdot 100}$$

где та - часса сульфатов, найденная по градуировочному графи-

т — масса навески анализируемой кислоты, г.

За результат анализа принимают среднее арифметическое двух параллельных определений, допускаемые расхождения между которыми при доверительной вероятности P = 0.95 не должны превышать 0,001%.

вышать 0,001%.

При разногласнях в оценке массовой доли сульфатов анализ проводяг фототурбидиметрическим методом, при поставках на экспорт — по ГОСТ 24024.12—81 визуальным методом.

(Изменениая редакция; Изм. № 3, 4, 6).

3.8. Определение массовой доли нитратов 3.8.1. Средства измерения, реактивы и растворы: кислота серная по ГОСТ 4204—77, х.ч.; натрий хлористый по ГОСТ 4233—77, ч.д.а., раствор готовят следующим образом: 0,5 г хлористого натрия взвешивают (резуль-

тат взвешивания в граммах записывают с точностью до второго десятичного знака) и растворяют в 200 см³ воды; 2 см³ раствора:

содержат 5 мг Cl :

индиго (органический краситель) по ГОСТ 6392—74, раствор готовят по ГОСТ 4517—87, раствор 1 (1:40) хранится в течение 1 года; 4 см³ раствора 1 помещают в мерную колбу вместимостью 100 см³ и доводят объем раствора водой до метки -- раствор 2 (1:1000), хранится в течение шести месяцев; 20 см³ раствора 2 помещают в мерную колбу вместимостью 100 см³ и доводят объем раствора водой до метки - раствор 3 (1:5000), свежеприготовленный:

раствор, содержащий 1 мг NO₃ в 1 см³, готовят по ГОСТ 4212—76 (раствор А): 10 см³ раствора А помещают в мерную колбу вместимостью 1 дм³, доводят объем раствора водой до метки и тщательно перемешивают (раствор Б); свежеприготовленный; 1 см3 раствора Б содержит 10 мкг NO3-;

вода дистиллированная по ГОСТ 6709-72;

весы лабораторные общего назначения по ГОСТ 24104-88 2-го класса точности с наибольшим пределом взвешивания 200 г;

бюретки, пипетки по ГОСТ 20292-74, пробирки, колбы мерные, цилиндры мерные по ГОСТ 1770-74 или аналогичного типа; допускается применение другой аппаратуры с аналогичными техническими и метрологическими характеристиками.

3.8.2. Проведение анализа

4 г анализируемой кислоты взвешивают (результат взвешивания в граммах записывают с точностью, до второго десятичного знака), помещают в мерный цилиндр или пробирку, откалиброванную на 30 см³, прибавляют 2 см³ раствора хлористого натрия, 1 см³ раствора индиго 3, 10 см³ серной кислоты и тщательно перемешивают. Через 10 мин доводят объем раствора водой до метки и снова перемешивают.

Кислоту считают соответствующей требованиям настоящего стандарта, если окраска анализируемого раствора будет одинаковой или интенсивнее окраски растворов сравнения, содержащих в том же объеме 2 см³ раствора хлористого натрия, 1 см³ раствора 3, 10 см3 серной кислоты, а также для кислоты 1-го сорта -- 2 см3 раствора Б, для 2-го сорта — 4 см3 раствора Б и для пищевой кислоты - 1,2 см³ раствора Б.

3.8.1, 3.8.2. (Измененная редакция, Изм. № 4).

3.9. Определение массовой доли железа

3.9.1. Средства измерения, реактивы и растворы:

кислота уксусная по ГОСТ 61-75, раствор с массовой долей. уксусной кислоты 12%;

кислота серная по ГОСТ 4204—77; раствор концентрации $c(1/2H_2SO_4) = 0.001$ моль/дм³ (0.001 н.); готовят по ГОСТ 25794.1 –83;

аммиак водный по ГОСТ 3760—79, раствор с массовой долей аммиака 10%;

гидроксиламин соляно-кислый по ГОСТ 5456-79;

натрий уксусно-кислый по ГОСТ 199-78;

буферный раствор с рН 5, готовят следующим образом: 38 г уксусно-кислого натрия растворяют в воде, затем добавляют 50 см³ раствора уксусной кислоты, доводят объем раствора водой до 1 дм³ и перемешивают;

 о-фенантролин, готовят следующим образом: к 200 см³ воды добавляют 100 см³ буферного раствора, 10 г соляно-кислого гидроксиламина и 0,1 г о-фенантролина; раствор сохраняют в склянке

из оранжевого стекла с притертой пробкой;

раствор, содержащий 1 мг Fe2+ в 1 см3, готовят по ГОСТ

4212-76 (раствор А);

10 см³ раствора А помещают в мерную колбу вместимостью 1 дм³, доводят объем раствора 0,001 н. раствором серной кислоты до метки и тщательно перемешивают (раствор Б), свежеприготовленный:

1 см² раствора Б содержит 10 мкг Fe²⁺; вода дистиллированная по ГОСТ 6709—72;

колориметр фотоэлектрический концентрационный типа КФК-2 или другой прибор с аналогичными метрологическими характеристиками;

весы лабораторные общего назначения по ГОСТ 24104—88 2-го класса точности с наибольшим пределом взвещивания 200 г;

бюретки, пипетки по ГОСТ 20292—74, пробирки, колбы мерные, цилиндры мерные по ГОСТ 1770—74 или аналогичного типа;

допускается применение другой аппаратуры с аналогичными техническими и метрологическими характеристиками.

(Измененная редакция, Изм. № 4, 6).

3.9.2. Построение градуировочного графика

Для построения градуировочного графика готовят серию образцовых растворов: в стаканы вместимостью 100 см³ вносят 0; 2; 4; 6; 8; 10; 12 см³ раствора Б, что соответствует 0, 20, 40, 60, 80, 100 и 120 мкг железа.

В каждый раствор прибавляют по 0,1 см³ раствора уксусной кислоты, 5 см³ о-фенантролина и 20 см³ буферного раствора.

Растворы погружают на 10 мин в кипящую водяную баню, после этого охлаждают. Затем растворы переносят в мерные колбы вместимостью 50 см³, доводят объем растворов водой до метки и перемешивают. Измерение оптической плотности растворов проводят по отно-шению к контрольному раствору в кюветах с толщиной поглощаю-щего свет слоя 20 мм на фотоэлектроколориметре при длине волны (490±10) нм.

По полученным данным оптических плотностей строят градуи-ровочный график, откладывая по оси абсцисс содержащиеся в об-разцовых растворах массы железа в микрограммах, по оси орди-нат — соответствующие им значения оптических плотностей.

(Изменекная редакция, Изм. № 6). 3.9.3. Проведение анализа

5,0 см³ раствора 1, приготовленного по п. 3.5, помещают в ста-кан вместимостью 100 см³ 0,1 см³ уксусной кислоты, 5 см³ фенан-гролина, 20 см³ буферного раствора и погружают на 10 мнн в кипящую водяную баню, охлажденный раствор переносят в мерную колбу вместимостью 50 см³, доводят объем раствора водой до метки и перемешивают. Оптическую плотность анализируемого раствора измеряют по отношению к пулевому раствору по п. 3.9.2.

(Измененная редакция, Изм. № 1).

3.9.4. Обработка результатов

Массовую долю железа (Х3) в процентах вычисляют по формуле

$$X_3 = \frac{m_1 \cdot 250 \cdot 100}{m \cdot 5 \cdot 10^3}$$

где m_1 — масса железа, найденная по градунровочному графику,

т — масса навески анализируемой кислоты, г.

За результат анализа принимают средисе арифметическое двух параллельных определений, допускаемые расхождения между которыми при доверительной вероятности $P\!=\!0.95$ не должны превышать 0,0005%

При разногласиях в оценке массовой доли железа анализ проводят по ГОСТ 24024.11—81 с применением α,α'-дипиридила. Допускается проводить определение массовой доли железа сульфосалициловым методом по ГОСТ 10555—75.

(Измененная редакция, Изм. № 3, 4, 6).

3.10. Определение массовой доли тяжелых металлов сероводородной группы (Pb)

3.10.1. Средства измерения, реактивы и растворы:

натрия гидроокись по ГОСТ 4328-77, растворы с массовой долей гидроокиси натрия 10%;

калий-натрий винно-кислый по ГОСТ 5845—79, раствор с мас-совой долей калия— натрия винно-кислого 20%; тиоацетамид, ч., раствор с массовой долей тиоацетамида 2%, фильтруют через обеззоленный фильтр «синяя лента», годен в течение 3 сут:

раствор, содержащий 1 мг Рb в 1 см3, готовят по

ГОСТ 4212-76 (раствор А);

10 см³ раствора А помещают в мерную колбу вместимостью 1 дм³, доводят объем раствором уксусной кислоты до метки (раствор Б свежеприготовленный); 1 см³ раствора содержит 10 мкг Pb;

бумага индикаторная универсальная;

кислота уксусная по ГОСТ 61—75, раствор концентрации $c(CH_3COOH) = 0.001$ моль/дм³;

вода дистиллированная по ГОСТ 6709-72:

колориметр фотоэлектрический концентрационный типа КФК или другой прибор с аналогичными метрологическими характеристиками;

весы лабораторные общего назначения по ГОСТ 24104—88 2-го класса точности с наибольшим пределом взвешивания 200 г;

бюретки, пипетки по ГОСТ 20292 -74, пробирки, колбы мерные, цилиндры мерные по ГОСТ 1770-74 или аналогичного типа;

допускается применение другой аппаратуры с аналогичными техническими и метрологическими характеристиками.

(Измененная редакция, Изм. № 6).

3.10.2. Проведение анализа

Определение проводят фотоколориметрическим тиоацетамидным метолом по ГОСТ 17319—76.

Для этого 25 см³ раствора 1, приготовленного по п. 3.5, помещают в мерную колбу вместимостью 50 см³, нейтрализуют по универсальной индикаторной бумаге до рН 6—7 раствором с массовой долей гидроокиси натрия 10%, охлаждают раствор до комнатной температуры, доводят до метки дистиллированной водой, перемешивают и далее анализ ведут по ГОСТ 17319—76, п. 4.4.

Допускается определение массовой доли тяжелых металлов се-

роводородным методом по ГОСТ 17319-76-

Допускается проводить определение массовой доли тяжелых металлов в ортофосфорной кислоте марки Б визуальным тпоацетамидным методом по ГОСТ 17319 -76, п. 4.3.

При разногласиях в оценке массовой доли тяжелых металлов сероводородной группы анализ проводят по ГОСТ 24024.7—80.

(Измененная редакция, Изм. № 4, 6).

3.11. Определение массовой доли мышьяка с диэтилдитиокарбаматом серебра в диметилформамиде

3.11.1. Средства измерения, реактивы и растворы:

кислота соляная по ГОСТ 3118-77, плотностью 1,19 г/см3;

олово двухлористое по ТУ 6—09—5393—78; готовят растворением 40 г $\rm SnCl_2 \cdot 2H_2O$ в смеси 25 см³ воды и 75 см³ соляной кислоты при нагревании;

калий йодистый по ГОСТ 4232—74, раствор с массовой долей йодистого калия 15%;

цинк металлический по ТУ 6- 09-5294-86 гранулированный,

не содержащий мышьяка;

калий бромистый по ГОСТ 4160-74;

калий бромновато-кислый по ГОСТ 4457-74:

бромид-броматный раствор; готовят растворением 20 г бромистого калия и 5,2 г бромновато-кислого калия в воде и доводят объем водой до 200 см³;

свинец уксусно-кислый по ГОСТ 1027-67, раствор с массовой

долей уксусно-кислого свинца 5%;

серебро азотно кислое по ГОСТ 1277-75, ч. д. а.;

диметилформамид по ГОСТ 20289-74;

1-эфедрин фармакопейный;

натрия диэгилдитиокарбамат по ГОСТ 8864--71;

бумага, пропитанная раствором уксусно-кислого свинца, гото-

вят по ГОСТ 4517 - 87;

серебра диэтилдигиокарбамат; готовят следующим образом: растворяют 2,25 г диэтилдитнокарбамата натрия в 100 см³ дистиллированной воды и осаждают небольшими порциями раствора нитрата серебра, приготовленного растворением 1,7 г AgNO₃ в 100 см³ дистиллированной воды. Осадок, который должен быть светло-желгым, промывают водой, фильтруют и высушивают на воздухе в темном месте, хранят в склянке из темного стекла;

поглогительный раствор готовят следующим образом: в 1000 см³ диметилформамица растворяют 0,25 г диэтилдитиокарбамата серебра и 0,25 г 1-эфедрина при интенсивном перемещивании в гечение 1 ч, после этого раствор фильтруют через бумажный фильтр в сухую склянку из темного стекла. Раствор приго-

ден в течение двух недель;

раствор мышьяка, содержащий 0,1 мг As2+ в 1 см3; готовят

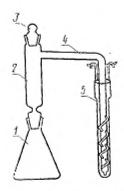
по ГОСТ 4212-76 (раствор А);

 2,5 см³ раствора А помещают в мерную колбу вместимостью
 см³, доводят объем раствора водой до метки и перемешивают (раствор Б).

1 см³ раствора Б содержит 0,001 мг Аѕ³+; вода дистиллированияя по ГОСТ 6709—72;

колориметр фотоэлектрический концентрационный типа КФК-2 или спектрофотометр типа СФ-4А.

(Измененная редакция, Изм. № 4, 6).


3 11.2. Подготовка к анализу

3.11.2.1. Прибор для определения мышьяка

Прибор состоит (см. чертеж) из конической колбы I вместимостью $100~{\rm cm^3}$, в которую вставляется на шлифе, или резиновой:

€. 16 FOCT 10678—76

пробке фильтрующая насадка 2 для заполнения бумагой, пропитанной раствором уксусно-кислого свинца. Сверху насадка закрывается пришлифованной или резиновой пробкой 3. Насадка имеет боковой отвод 4, заканчивающийся капилляром и навинченной припаянной стеклянной спиралью.

І—коническая колба: 2 фильтрующая насадка; 3 пробка; 4-- Соковой откод; 3--поглотительный сокуд

Поглотительный сосуд 5 представляет собой пробирку с расширением сверху и крючками для подвешивания на боковом отводе фильтрующей насадки. Длина узкой части пробирки 10—11 см, внутренний диаметр — 1 см. Высота расширенной части — 3 см

3.11.2.2. Построение градуировочного графика,

Для построения градуировочного графика готовят серию образдовых растворов: в колбы для отгонки мышьяка вносят 2, 4, 6, 8, 10, 12, 15 см³ раствора Б, что соответствует 0,002; 0,004; 0,006; 0,008; 0,010; 0,012; 0,015 мг As³⁺.

В колбы добавляют до 30 см³ воды, 10 см³ соляной кислоты, 2 см³ раствора йодистого калия и 2 см³ хлористого олова. Раствор

перемешивают и оставляют на 15 мин-

Собирают прибор: фильтрационную колонку заполняют сухой бумагой, пропитанной раствором уксусно-кислого свинца. В поглотительный сосуд наливают 5 см³ раствора диэтилдитнокарбамата серебра в диметилформамиде, помещают внутрь трубку бокового отвода и подвешивают сосуд к отводу на крючках.

В колбу для отгонки помещают 5 г металлического цинка и

быстро закрывают колбу колонкой.

Отгонку мышьяка ведут в течение 1 ч, после этого измеряют оптические плотности образцовых растворов по отношению к рас-

твору сравнения при длине волны (540 ± 10) им в кюветах с толициюй поглощающего свет слоя 10 мм.

В качестве раствора сравнения применяют поглотительный

раствор.

По полученным данным строят градуировочный график, от-кладывая по оси абсцисс содержащиеся в образцовых растворах массы мышьяка в миллиграммах, по оси ординат — соответствую-щие им значения оптических плотностей. (Измененная редакция, Изм. № 6). 3.11.3. Проведение аналыза

50 г кислоты марки А или 5 г кислоты марки Б взвешивают (результат взвешивания в граммах записывают с точностью до второго десятичного знака), растворяют в воде в мерной колбе вместимостью 250 см³, доводят объем раствора водой до метки и перемешивают.

25 –30 см³ раствора кислоты марки А или 5—10 см³ раствора кислоты марки Б помещают в коническую колбу прибора, добавляют до 30 см³ волы, 5 см³ соляной кислоты, 1 см³ бромид-броматного раствора. Нагревают на кипящей водяной бане и оставляют раствор на 10 мин.

В течение этого времени желтая окраска, вызванная свободным бромом, должна быть устойчивой. Если раствор обесцветится, имм оромом, должна оыть устойчивой. Если раствор обесцветится, добавляют бромид-броматный раствор до появления устойчивой окраски. По истечении 10 мин пробу нагревают на электроплитке до кипения и кипятят до обесцвечивания раствора.

Затем раствор охлаждают, добавляют воду приблизительно до 30—35 см³, 5 см³ соляной кислоты, 2 см³ раствора йодистого калия и 2 см³ раствора хористого олова. Раствор перемешивают и выдерживают в течение 15 мин.

Собирают прибор: фильтрационную колонку заполняют сухой бумагой, пропитанной раствором уксусно-кислого свинца. В погло-тительный сосуд наливают 5 см³ раствора диэтилдитиокарбамата серебра в диметилформамиде. Внутрь сосуда помещают трубку бокового отвода и подвешивают сосуд к отводу на крючках. В кол-бу для отгонки помещают 5 г металлического цинка и быстро закрывают колбу колонкой.

Отгонку мышьяка и измерение оптической плотности растворов проводят, как указано в п. 3.11.2.2.
(Измененная редакция, Изм. № 4, 6).

3.11.4. Обработка результатов

Массовую долю мышьяка (Х4) в процентах вычисляют по формуле

$$X_4 = \frac{m_1 \cdot 250 \cdot 100}{1000 \cdot V \cdot m}$$
.

где m_1 — масса мышьяка, найденная по градуировочному графику, мг;

V -- объем раствора, взятый для определения, см³;

т - масса навески кислоты, г.

За результат анализа принимают среднее арифметическое двух параллельных определений, допускаемые расхождения между которыми при доверительной вероятности P = 0.95 не должны превышать 10% относительно среднего результата определяемой величины.

При разногласиях в оценке массовой доли мышьяка анализ

проводят по ГОСТ 24024.10 -- 81 с применением пиридина.

При разногласии допускается определение массовой доли мышьяка проводить по ГОСТ 10485—75 с применением бромнортутной бумаги.

(Измененная редакция, Изм. № 6).

3.11-3.11.4. (Введены дополнительно, Изм. № 3, 4).

 3.12. Определение массовой доли восстанавливающих веществ в пересчете на H₃PO₃

3.12.1. Средства измерения, реактивы и растворы:

кислота серная по ГОСТ 4204 - 77, х.ч., раствор концентрации $c(1/2H_2SO_4) = 4$ моль/дм³ (4 н.); готовят по ГОСТ 25794.1 - 83;

калий бромновато-кислый по ГОСТ 4457—74, х. ч., раствор концентрации $c(1/6\text{KBrO}_3) = 0.1$ моль/дм³ (0,1 н.);

калий бромистый по ГОСТ 4160- 74, ч. д. а.;

калий йодистый по ГОСТ 4232 74, х.ч., раствор с массовой

долей йодистого калия 20%;

калий бромид-бромат, раствор; готовят следующим образом: 0,496 г бромистого калия растворяют в 50 см³ раствора бромновато-кислого калия концентрации $c(1/6 \text{ KBrO}_3) = 0,1 \text{ моль/дм³}$ (0,1 н.) и разбавляют до 100 см³;

натрий серноватисто-кислый (тиосульфат натрия) по СТ СЭВ

223—75, раствор концентрации $c(Na_2S_2O_3) = 0,1$ моль/дм³;

крахмал растворимый по ГОСТ 10163 -76, раствор с массовой долей 1%, свежеприготовленный;

вода дистиллированная по ГОСТ 6709-72;

весы лабораторные общего назначения по ГОСТ 24104—88 2-го класса точности с наибольшим пределом взвешивания 200 г; бюретки, пипетки по ГОСТ 20292—74, пробирки, колбы мерные,

цилиндры мерные по ГОСТ 1770-74 или аналогичного типа;

допускается применение другой аппаратуры с аналогичными техническими и метрологическими характеристиками.

(Измененная редакция, Изм. № 4, 6).

3.12.2. Проведение анализа

10 г анализируемой кислоты взвешивают (результат взвешивания в граммах записывают с точностью до второго десятичного знака), переносят в коническую колбу с притертой пробкой вместимостью 300 см³, добавляют 100 см³ воды, 10 см³ раствора серной кислоты, 1 см³ раствора бромнд-бромата калия и 25 см³ раствора бромновато-кислого калия. Пробу нагревают до кипения, не закрывая пробкой, убирают с плитки, дают постоять около 10 мин и затем кипятят для удаления выделившегося брома, т. е. до полного обесцвечивания. После этого пробу охлаждают, прибавляют 1—2 г йодистого калия, перемешивают, закрывают колбу пробкой и выдерживают 5 мян в темном месте. Затем раствор титруют тносульфагом натрия до обесцвечивания, добавляя к концу титрования 1 см³ раствора крахмала.

Одновременно проводят контрольный опыт: в коническую колбу с притертой пробкой прибавляют 100 см³ воды, 10 см³ раствора серной кислоты, 1 см³ раствора бромид-бромата калия, 25 см³ раствора бромновато-кислого калия и продолжают анализ, как

описано выше.

(Измененная редакция, Изм. № 6).

3.12.3. Обработка результатов

Массовую долю восстанавливающих веществ в пересчете на H_3PO_3 (X_5) в процентах вычисляют по формуле

$$X_5 = \frac{(V - V_1) \cdot 3.418 \cdot 100}{m \cdot 1000}$$

где V - объем раствора тпосульфата натрия концентрации точно 0,1 моль/дм³, израсходованный на титрование контрольного раствора, см³;

V₁ — объем раствора тиосульфата натрия концентрации точно 0,1 моль/дм³, израсходованный на титрование анализируемого раствора, см³;

т — масса навески анализируемой кислоты, г;

3,418 — масса Н₃РО₃, соответствующая 1 см³ раствора тиосульфата натрия концентрации точно 0,1 моль/дм³, мг.

За результат анализа принимают среднее арифметическое двух нараллельных определений, допускаемые расхождения между которыми при доверительной вероятности P=0,95 не должны превышать 0,01%.

Допускается определение массовой доли восстанавливающих веществ — по ГОСТ 6552—80.

(Измененная редакция, Изм. № 1, 4, 6).

 3.13. Определение наличия метафосфорной кислоты (HPO₃) 3.13.1. Средства измерения, реактивы и растворы:

3.13.1. Средства измерения, реактивы и растворы: альбумин яичный, раствор; готовят следующим образом: 5 г альбумина взвешивают (результат взвешивания в граммах записывают с точностью до второго десятичного знака), помещают в коническую колбу, прибавляют 250 см³ воды, тщательно перемешивают в течение 10 мин и фильтруют. При отсутствии альбумина берут белок из одного свежего яйца и после взвешивания прибавляют к нему воду с таким расчетом, чтобы получить приблизительно раствор с массовой долей белка 20%. Белок растворяют осторожным вращением стакана так, чтобы избежать образования пены, после этого раствор фильтруют; вода дистиллированияя по ГОСТ 6709—72; весы даборатовные общего назначения по ГОСТ 24104—88.

весы лабораторные общего назначения по ГОСТ 24104-88

2-го класса точности с наибольшим пределом взвешивания 200 г; бюретки, пипетки по ГОСТ 20292—74, пробирки, колбы мерные, цилиндры мерные по ГОСТ 1770—74 или аналогичного типа;

допускается применение другой аппаратуры с аналогичными техническими и метрологическими характеристиками.

3.13.2. Проведение анализа

25 г пищевой кислоты и технической 1-го сорта, 10 г техниче-ской кислоты 2-го сорта, взвещивают (результат взвещивания в граммах записывают с точностью до второго десятичного знака), переносят в мерную колбу вместимостью 250 см³ и доводят объем раствора водой до метки.

5,0 см³ полученного раствора переносят в градуированный ци-линдр с притертой пробкой, добавляют до 10 см³ воды, 5 см³ рас-твора альбумина и перемешивают без взбалтывания.

Кислоту счигают соответствующей требованиям настоящего стандарта, если раствор остается прозрачным.

3.13.1, 3.13.2. (Измененная редакция, Изм. № 4).

3.14. Определение массовой доли взвешенных частиц

3.14.1. Средства измерения, реактивы и растворы:

10 г анализируемой кислоты взвешивают (результат взвешивания в граммах записывают с точностью до второго десятичного знака), прибавляют 100 см³ дистиллированной воды и фильтруют через высушенный при 105°C и доведенный до постоянной массы стеклянный фильтрующий тигель.

Осадок промывают до нейтральной реакции (проба на лак-мус), затем фильтр с осадком высушивают при 105°С до постоян-

ной массы.

(Измененная редакция, Изм. № 4, 6).

3.14.1а. Средства измерения, реактивы и растворы:

вода дистиллированная по ГОСТ 6709--72;

весы лабораторные общего назначения 2-го класса точности по ГОСТ 24104 -88 с наибольшим пределом взвещивания 200 г;

тигель стеклянный фильтрующий типа ТФ-ПОР 16 по ГОСТ

25336 - 82.

Допускается применение других средств измерения с аналогичными технологическими и метрологическими характеристиками.

(Введен дополнительно, Изм. № 6).

3.14.2. Обработка результатов

Массовую долю взвещенных частиц (X_6) в процентах вычисляют по формуле

$$X_6 = \frac{(m-m_1) \cdot 100}{m_2}$$

где m — масса фильтра с осадком, г;

 m_1 — масса фильтра, г:

т₂ - - масса навески анализируемой кислоты, г.

Примечание. Для кислот 1-го сорта и лищевой привеса не должно быть. 3.15. Определение наличия ототкэж фосфоpa (P4)

3.15.1. Средства измерения, реактивы и растворы:

серебро азотно-кислое по ГОСТ 1277-75, насыщенный спиртовой раствор:

спирт этиловый ректификованный технический по ГОСТ

18300-87:

бензол по ГОСТ 5955-75:

спиртобензольная смесь (2:1);

метиловый оранжевый, водный раствор с массовой долей 0,1%;

вода дистиллированная по ГОСТ 6709-72;

весы лабораторные общего назначения по ГОСТ 24104-88 2-го класса точности с наибольшим пределом взвешивания 200 г; бюретки, пинетки по ГОСТ 20292-74, пробирки, колбы мерные, цилиндры мерные по ГОСТ 1770-74 или аналогичного типа;

допускается применение другой аппаратуры с апалогичными техническими и метрологическими характеристиками.

(Измененная редакция, Изм. № 4, 6).

3.15.2. Проведение анализа

8 г анализируемой кислоты взвешивают (результат взвещивания в граммах записывают с точностью до второго десятичного знака), переносят в делительную воронку вместимостью 100 см3, смывая остатки кислоты несколькими кубическими сантиметрами воды, прибавляют в воронку 5-7 см3 бензола, экстрагируют фосфор в течение 2-3 мин при интенсивном встряхивании. После отстаивания отделяют водный слой.

Бензольный слой в воронке промывают несколько раз водой до отсутствия кислой реакции в промывных водах по метиловому оранжевому, помещают в калиброванную пробирку на 10 см³ с притертой пробкой, ополаскивают воронку 2—3 см³ спирта, дово-дят объем в пробирке до метки спиртобензольной смесью и перемешивают.

5 см³ полученного раствора помещают в колориметрическую пробирку с притертой пробкой, прибавляют 2 капли раствора азотно-кислого серебра, пробирку закрывают пробкой и перемешивают. Кислоту считают соответствующей требованиям настоящего стандарта, если при наблюдении на белом фоне раствор не будет иметь окраску.

(Изменениая редакция, Изм. № 3, 4).

3.16. Определение массовой доли фтора

З.16.1. Средства измерения, реактивы и растворы: кислота уксусная ледяная по ГОСТ 61—75;

аммиак водный по ГОСТ 3760-79, раствор 1:1;

натрий фтористый по ГОСТ 4463-76, высущенный при 120°С в течение 2 ч:

аммоний уксусно-кислый по ГОСТ 3117-78;

калий хлористый по ГОСТ 4234-77, х. ч., кристаллический;

соль динатриевая этилендиамин-N,N,N'N'-тетрауксусной кислоты, 2-водная (трилон Б) по ГОСТ 10652-73, раствор с массовой долей 10%:

фенолфталени (индикатор) по ТУ 6-09-5360-87, спиртовой рас-

твор с массовой долей 0.5%:

ацетатно-аммонийный буферный раствор рН 5,7-5,9; готовят следующим образом: растворяют 231 г уксусно-кислого аммония в воде в мерной колбе вместимостью 1000 см3. Объем раствора доводят водой до метки, перемешивают. Добавляют 10-15 см3 уксусной кислоты, доводят рН раствора до 5,7-5,9. Величину рН приготовленного раствора проверяют с помощью рН-метра;

раствор для заполнения фторселективного электрода; готовят следующим образом: взвещивают 2,1 г фтористого натрия и 3,73 г хлористого калия (результаты взвещивания в граммах записывают с точностью до четвертого десятичного знака) и растворяют в дистиллированной воде в мерной колбе вместимостью 500 см8. Рас-

твор хранят в полиэтиленовой посуде;

образцовый раствор, содержащий 1-10-1 г-нон/дма фтора; готовят следующим образом: взвешивают 4,2 г фтористого натрия (результат взвешивания в граммах записывают с точностью до четвертого десятичного знака), растворяют в воде в мерной колбе вместимостью 1000 см³, прибавляют 200 см³ ацетатно-аммонийного буферного раствора. Объем раствора доводят водой до метки и

перемешивают;

образцовый раствор, содержащий $1 \cdot 10^{-2}$ г · ион/дм³ фтора; готовят следующим образом: 100 см³ раствора $1 \cdot 10^{-1}$ г · ион/дм³ фтора помещают в мерную колбу вместимостью 1000 см³, прибавляют 180 см³ буферного раствора. Объем раствора доводят водой до метки и перемешивают.

Растворы, содержащие 1·10-3; 1·10-4, 1·10-5 г · нои/дм3 фтора; готовят последовательным подобным разбавлением предыдущих

растворов.

Образцовые растворы хранят в полиэтиленовой посуде;

вода дистиллированная по ГОСТ 6709-72;

рН-метр типа рН-340;

электрод фторселективный типа ЭF-IV или любой другой аналогичной конструкции,

электрод сравнения хлорсеребряный типа ЭВЛ-1МЗ;

весы лабораторные общего назначения по ГОСТ 24104-88

2-го класса точности с наибольшим пределом взвешивания 200 г; бюретки, пилетки по ГОСТ 20292—74, пробирки, колбы мерные, инлиндры мерные по ГОСТ 1770-74 или аналогичного типа;

допускается применение другой аппаратуры с аналогичными техническими и метрологическими характеристиками. (Измененная редакция, Изм. № 4).

3.16.2. Подготовка к анализу

3.16.2.1. Построение градуировочного графика

Для каждого образцового раствора определяют величину потенциала в милливольтах следующим образом: 25 -- 30 см³ образцового раствора помещают в стакан вместимостью 50 см3, в него погружают фторселективный и хлорсеребряный электроды и измеряют величину потенциала после установления равновесного значения. На основании полученных результатов строят градупровочный график на полулогарифмической бумаге, откладывая на оси абсцисс - нонные концентрации фтора в г нон/л в логарифмическом масштабе, а на оси ординат - соответствующие им значения величины потенциала в милливольтах.

Градуировочный график прямолинеен в области 1-10-5-

1 · 10-1 г · нон/л фтора.

Градуировочный график проверяют ежедневно.

3.16.3. Проведение анализа

3-4 г анализируемой кислоты взвешивают (результат взвешивания в граммах записывают с точностью до третьего десятичного знака), помещают в мерную колбу вместимостью 100 см³, добавляют воды 20—30 см³, 2 см³ раствора трилона Б, 2—3 капли фенолфталенна и по каплям раствор аммиака до появления мали-

новой окраски. Затем прибавляют 20 см³ буферного раствора, объем раствора в колбе доводят водой до метки и перемешивают. 25—30 см³ приготовленного раствора помещают в стакан вместимостью 50 см³ и измеряют электродный потенциал после установления его равновесного значения. По градуировочному графику определяют ионную концентрацию фтора в растворе в г∙нон/л. (Изменения редакция, Изм. № 4).

3.16.4. Обработка результатов

Массовую долю фтора (Х₇) в процентах вычисляют по формуле

$$X_1 = \frac{C \cdot 0.019 \cdot 100 \cdot 100}{m}$$

где C — ионная концентрация фтора, найденная по градунровочному графику, г · ион/дм3;

т масса навески образца, г.

За результат анализа принимают среднее арифметическое двух параллельных определений, допускаемые расхождения между которыми при доверительной вероятности Р=0,95 не должны превышать 0.02%.

(Измененная редакция, Изм. № 6).

4. УПАКОВКА, МАРКИРОВКА, ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

4.1. Термическую ортофосфорную кислоту 1 и 2-го сортов упаковывают в стеклянные бутыли, полиэтиленовые бутыли и канистры или в специальные контейнеры вместимостью до 6 м3.

Пищевую термическую ортофосфорную кислоту упаковывают в

стеклянные бутыли вместимостью 20 дм3.

Термическую фосфорную кислоту, предназначенную для постав-ки на экспорт, упаковывают в соответствии с ГОСТ 26319—84.

(Измененная редакция, Изм. № 4, 6).

4.2. Стеклянные бутыли закрывают стеклянными, полиэтиленовыми пробками или завинчивающимися пластмассовыми крышками, головки обвязывают полиэтиленовой пленкой (ГОСТ 10354-73).

4.3. Стеклянные бутыли, полиэтиленовые канистры и бутыли упаковывают в плотные дощатые ящики типов I и II—2 по ГОСТ 2991—85 или ящик № 3—2 по ГОСТ 18573—86, заполненный рыхлым упаковочным материалом или в полиэтиленовые барабаны (стеклянные бутыли вместимостью 20 дм³).

Масса грузового места — не более 45 кг для ящиков типа I к

№ 4 и не более 60 кг — для ящиков типа II — 2.

(Измененная редакция, Изм. № 4, 5).

4.4. К горлышку каждой бутыли, канистры прикрепляют ярлык или накладывают этикетку на пробку (крышку) с обвязкой полиэтиленовой пленкой с указанием:

а) наименования предприятия-изготовителя;

- б) наименования продукта и сорта с указанием «пищевая» или «техническая»;
 - в) «брутто» и «нетто»;
 - г) номера партин.
- 4.5. Транспортная маркировка по ГОСТ 14192—77 с нанесением основных, дополнительных, информационных надписей, манипуляционного знака «Верх, не кантовать», знака опасности по ГОСТ 19433—88 (класс 8, подкласс 8.1, черт. 8, классификационный шифр 8113), серийного помера 00H 1805, номер аварийной карточки 101.

Дополнительно на каждую единицу транспортной тары наносят

следующие обозначения:

наименование продукта, марку, сорт;

номер партии;

дату изготовления;

обозначение настоящего стандарта.

На контейнеры наносят предупредительные надписи: «Опасно», «Едкая жидкость».

Транспортная маркировка грузов для экспорта осуществляется в соответствии с заказом-нарядом внешнеторговой организации и по ГОСТ 14192- 77.

Упаковка, маркировка, транспортирование и хранение термической ортофосфорной кислоты для районов Крайнего Севера и труднодоступных районов, должны соответствовать требованиям настоящего стандарта и ГОСТ 15846—79.

(Измененная редакция, Изм. № 4, 5, 6).

4.6. (Исключен, Изм. № 4).

4.7. Термическую ортофосфорную кислоту транспортируют железнодорожным и автомобильным транспортом в соответствии с правилами перевозки опасных грузов, действующими на транспорте данного вида.

Кислоту, упакованную, как указано в п. 4.3; транспортируют в

крытых транспортных средствах повагонными отправками.

Ортофосфорную термическую кислоту по железным дорогам транспортируют также в вагонах-цистернах по ГОСТ 10674—82. Степень (уровень) заполнения цистерн следует рассчитывать с учетом полного использования вместимости (грузоподъемности) цистерн и объемного расширения продукта при возможном перемаде температур в пути следования.

Ортофосфорную кислоту в специальных контейнерах вместимостью до 6 м³ перевозят автомобильным транспортом.

(Измененная редакция, Изм. № 4, 5, 6).

4.8. Термическую ортофосфорную кислоту хранят в стальных футерованных закрытых емкостях, а также в бутылях, канистрах и контейнерах, в которых она транспортировалась.

(Измененная редакция, Изм. № 3).

5. ГАРАНТИИ ИЗГОТОВИТЕЛЯ

5.1. Готовая продукция должна быть принята техническим контролем предприятия-изготовителя. Изготовитель гарантирует соответствие всего выпускаемого продукта гребованиям настоящего стандарта при соблюдении условий гранспортирования и хранения.

Гарантийный срок хранения термической ортофосфорной

кислоты - шесть месяцев со дня изготовления.

5.1, 5.2. (Измененная редакция, Изм. № 4).
 Разд. 6. (Исключен, Изм. № 4).

информационные данные

 РАЗРАБОТАН И ВНЕСЕН Министерством по производству минеральных удобрений

РАЗРАБОТЧИКИ

- И. Б. Мойжес, Г. Д. Иванова
- УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета стандартов Совета Министров СССР от 06.01.76 № 20
- 3. Стандарт соответствует международным стандартам ИСО 3359—75, ИСО 3708—76, ИСО 4285—87 в части определения массовой доли мышьяка и хлоридов и метода отбора проб
- 4. B3AMEH ΓΟCT 10678-63
- 5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕН-ТЫ

Обозначение НТД, на который дама ссылкя	Номер пункта		
FOCT 61-75	3.9.1, 3.10 1, 3 16.1		
FOCT 199-78	3.9.1		
FOCT 1027-67	3.11.1		
FOCT 1277—75	3.6.1, 3.15.1, 3.11.1		
FOCT 1770—74	3.4.1, 3.6.1, 3.7.1, 3.8.1, 3.9.1, 3.10.1, 3.12.1, 3.13.1, 3.15.1, 3.16.1		
FOCT 2991-85	4.3		
FOCT 3117-78	3.16.1		
FOCT 3118-77	3.11.1		
FOCT 365269	3,4.1		
FOCT 3760—79	3.9.1, 3.16.1		
ΓOCT 4108—72	3.7.1		
FOCT 4160-74	3.11.1, 3.12.1		
FOCT 4172—76	3.4.1		
FOCT 4204-77	3.8.1, 3.9.1, 3.12.1		
FOCT 4212—76	3.6.1, 3.7 1, 3.8.1, 3.9.1, 3.10.1, 3.11.1, 3.15.1		
FOCT 4232-74	3.11 1, 3.12.1		
FOCT 4233-77	3.8.1		
FOCT 4234-77	3.16.1		
FOCT 4328-77	3.4.1, 3.10.1		
FOCT 4457-74	3.11.1, 3.12.1		
FOCT 4461-77	3.6.1, 3.9.1		
FOCT 4463-76	3.16.1		
FOCT 451787	3.8.1, 3.11.1		
FOCT 5456-79	3.9.1, 3.10.1		

Обсаначение НТД, на который дана ссылка	Номер пункта		
FOCT 5845—79	3.10.1, 3.15.1		
FOCT 595575	3.8.1, 3.15.1		
FOCT 6392—74	3.8.1		
FOCT 6552-80	3.4.3, 3.6.1, 3.7.1, 3.10.1, 3.12.3		
FOCT 6709—72	3.4.k, 3.5, 3.6.1, 3.7.1, 3.8.1, 3.9.1, 3.10.1 3.11.1, 3.12.1, 3.13.1, 3.14.1a, 3.15.1,		
FOCT 0004 71	3.16.1		
FOCT 8864—71	3.11.1		
FOCT 10163—76	3.7.1, 3.12.1,		
FOCT 10354—82	4.2 3.11.4		
FOCT 10485—75 FOCT 10555—75	3.9.4		
FOCT 10652—73	3.16.1		
FOCT 10674—82	3.15.1, 4.7		
ГОСТ 12082—82	4.3		
ΓΟCT 14192—77	4.5		
FOCT 1584679	4.5		
ГОСТ 1/7319—76	3.10.2		
ГОСТ 18300—87	3.4.1, 3.15.1		
ГОСТ 18573—86	4.3, 4.5, 4.7		
FOCT 1943388	4.5		
ΓOCT 20289—74	3.11.1		
FOCT 20292-74	3.4.1, 3.6.1, 3.7.1, 3.8.1, 3.9.1, 3.10.1, 3.12.1, 3.13.1, 3.15.1, 3.16.1		
ΓΟCT 24024.6—80	12, 3.6.4		
ΓOCT 24024.7—80	1.2, 3.10.2		
FOCT 24024,10—81	12, 3.11.4		
ΓΟCT 24024.11—81	1.2, 3.9.4		
FOCT 24024.12—81	1.2, 3.74		
FOCT 24104—88	3.4.1, 3.6.1, 3.7.1, 3.8.1, 3.9.1, 3.10.1, 3.12.1, 3.13.1, 3.14.1a, 3.15.1, 3.16.1		
ΓOCT 25336-82	3.14.1a		
FOCT 25794,1-83	3.4.1, 3.9.1, 3.12.1		
ΓOCT 2631984	4.1		
TV 6-09-5393—78	3.11,1		
Ty 6-09-5294—86	3.11.1		
TV 6-09-5360-87	3.16.1		

- Срок действия продлен до 01.01.97 Постановлением Госстандарта СССР от 18.01.91 г. № 141
- 7. ПЕРЕИЗДАНИЕ (нюнь 1993 г.) с Изменениями № 1, 2, 3, 4, 5, 6, утвержденными в феврале 1978 г., марте 1980 г., нюне 1981 г., феврале 1986 г., сентябре 1987 г., феврале 1991 г. (ИУС 4—78, 4—80, 9—81, 5—86, 12—87, 5—91).

Редактор Р. С. Федорова Технический редактор В. Н. Прусакова Корректор В. М. Смирнова

Сдано в набор 19.07.93. Подл. в печ. 05.08.93. Усл. печ. л. 1,86. Усл. кр.-отт 1,86. Уч.-кэд. л. 1,85. Тир. 1282 экз. С 439.

Ордека «Знах Почета» Издательство стандартов, 107076, Москва, Колодеяный пер., 14. Тип. «Московский печатник». Москва, Лялин пер., 6. Зап. 158