## ГОСУДАРСТВЕННЫЯ СТАНДАРТ СОЮЗА ССР

#### ЛАМПЫ ГЕНЕРАТОРНЫЕ,

## МОДУЛЯТОРНЫЕ И РЕГУЛИРУЮЩИЕ МОЩНОСТЬЮ, РАССЕИВАЕМОЙ АНОДОМ, СВЫШЕ 25 ВТ

## Методы измерений термоэлектронного тока первой сетки

Oscillator, modulator and regulation tubes with anode dissipated power above 25 W. Methods of measurements of thermionic control grid current FOCT 21106.11-77\*

> Взамен ГОСТ 7046—54 в части разд. Х

Постановлением Государственного комитета стандартов Совета Министров СССР от 17 октября 1977 г. № 2444 срок введения установлен

c 01.07.79

Проверен в 1983 г. Постановлением Госстандарта от 17.02.84 № 495 срок действия продлен

до 01.07.89

#### Несоблюдение стандарта преследуется по закону

Настоящий стандарт распространяется на генераторные, модуляторные и регулирующие лампы мощностью, рассенваемой анодом, свыше 25 Вт (далее — лампы) и устанавливает следующие методы измерений термоэлектронного тока первой сетки (далее — термоэлектронный ток сетки):

1 — метод измерения термоэлектронного тока сетки при посто-

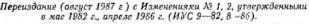
янном отрицательном напряжении первой сетки;

 метод измерення термоэлектронного тока сетки при переменном напряжении первой сетки и заданной мощности, рассеиваемой этой сеткой;

3 — метод измерения термоэлектронного тока сетки при имлульсном напряжения первой сетки и постоянных напряжениях

других электродов.

Стандарт соответствует публикации МЭК 151—15 в части, касающейся измерения термоэлектронного тока сетки при переменном напряжении первой сетки и заданной мощности, рассеиваемой этой сеткой.


Общие требования при измерении и требования безопасно-

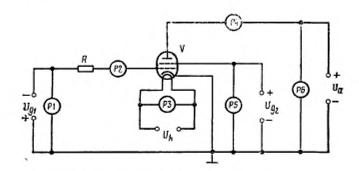
сти — по ГОСТ 21106.0--75.

(Измененная редакция, Изм. № 1).

Издание официальное

Перепечатка воспрещена




### 1. ОБЩИЕ ТРЕБОВАНИЯ

 Выбор метода измерения предусматривается в стандартах на лампы конкретных типов (далее — стандарты)\*.

## 2. МЕТОД ИЗМЕРЕНИЯ ТЕРМОЭЛЕКТРОННОГО ТОКА СЕТКИ ПРИ ПОСТОЯННОМ ОТРИЦАТЕЛЬНОМ НАПРЯЖЕНИИ ПЕРВОЙ СЕТКИ

2.1. Аппаратура

2.1.1. Функциональная электрическая схема установки для измерения термоэлектронного тока сетки должна соответствовать указанной на черт. 1 (в качестве примера приведена схема измерения термоэлектронного тока сетки тетрода с катодом косвенного накала).



Р1, Р3, Р5, Р6—приборы для измерении постоянного (переменного) напряжения; Р2, Р4—приборы для измерения тока; R—защитный резистор, V—испытываемоя лания

Черт. 1

2.1.2. Защитный резистор R, предназначенный для защиты прибора P2 от больших токов первой сетки, используется в схеме измерительной установки при применении прибора P2 повышенной чувствительности.

Значение сопротивления защитного резистора выбирают таким, чтобы падение напряжения на нем не превышало 5% значения напряжения первой сетки.

В схеме измерительной установки вместо резистора R либо совместно с ним допускается применять выключатель, шунтиру-

17 MA

Здесь и далее при отсутствии стандартов на лампы конкретных типов нормы, режимы и требования указывают в нормативно-технической документации.

ющий измерительный прибор P2. При отсчете показания прибора P2 выключатель должен находиться в положении «разомкнуто».

(Измененная редакция, Изм. № 2).

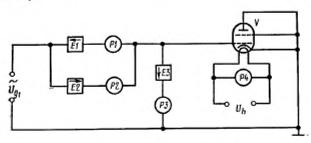
2.2. Подготовка и проведение измерения

 Устанавливают режим измерения, указанный в стандартах. При этом на первую сетку подают отрицательный потенциал относительно катода.

Необходимость подачи напряжений на другие электроды лампы устанавливается в стандартах или технических условиях на лампы конкретных типов.

(Измененная редакция, Изм. № 1).

2.2.2. Отсчет тока сетки производят непосредственно по пока-


заниям прибора Р2.

При наличии между электродами тока утечки измеренное значение тока сетки есть сумма термоэлектронного тока сетки и тока утечки.

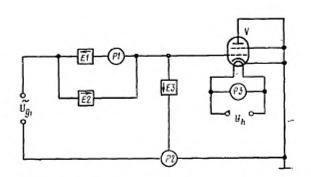
# МЕТОД ИЗМЕРЕНИЯ ТЕРМОЭЛЕКТРОННОГО ТОКА СЕТКИ ПРИ ПЕРЕМЕННОМ НАПРЯЖЕНИИ ПЕРВОЙ СЕТКИ И ЗАДАННОЯ МОЩНОСТИ, РАССЕИВАЕМОЯ ЭТОЯ СЕТКОЯ

3.1. Аппаратура

3.1.1. Функциональная электрическая схема установки для измерения термоэлектронного тока сетки должна соответствовать указанной на черт. 2 (в качестве примера приведена схема измерения термоэлектронного тока сетки тетрода с катодом косвенного накала).



РІ, РЭ—приборы для камерения тока: Р4. РЗ—приборы для намерения постоянного (переменного) напряжения; V—испытываемая лампа; ЕІ, Е2, Е3—электровакуумные нля полупроводниковые диоды


Черт. 2

Измерение мощности, рассенваемой первой сеткой, можно производить непосредственно приборами для измерения мощности, как указано на черт. 3.

3.1.2. Через цепь измерения напряжения сетки, состоящей из последовательно соединенных ЕЗ и РЗ (черт. 2), не должен протекать ток, более чем 2% значения тока сетки при действии положительного полупериода напряжения.

3.1.3. Прибор для измерения мощности Р2 (черт. 3) должен

иметь класс точности не ниже 1.5.



PI- прибор для измерения тока; P2-прибор для измерения мощности; P3-прибор для измерения постоянного (переменного) напряжения; V-жевытываемая дляща; EI, EI, ES-экентровкуумные или полупроводиямсковые дляща;

Черт. 3

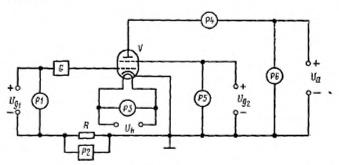
3.2. Подготовка и проведение измерений

3.2.1. Устанавливают режим измерения, указанный в стандартах. При этом мощность Рег в ваттах, рассенваемую первой сеткой, для схемы черт. З устанавливают непосредственно по ноказанию прибора Р2. Для схемы черт. 2 — устанавливают расчетным путем по формуле

$$P_{g1} = \frac{\pi^2}{4} I_{g1} \cdot U'_{g1}, \tag{1}$$

где  $I_{\rm gt}$  — ток первой сетки, определяемый по прибору P2, A;  $U'_{\rm gt}$  — напряжение первой сетки, определяемое по прибору

3.2.2. Отсчет тока сетки производят непосредственно по пока-


занию прибора Р1.

При наличии между электродами тока утечки измеренное значение тока сетки есть сумма термоэлектронного тока этой сетки и тока утечки.

## МЕТОД ИЗМЕРЕНИЯ ТЕРМОЭЛЕКТРОННОГО ТОКА СЕТКИ ПРИ ИМПУЛЬСНОМ НАПРЯЖЕНИИ ПЕРВОЙ СЕТКИ И ПОСТОЯННЫХ НАПРЯЖЕНИЙ ДРУГИХ ЭЛЕКТРОДОВ

4.1. Аппаратура

4.1.1. Функциональная электрическая схема установки для измерения термоэлектронного тока сетки должна соответствовать указанной на черт. 4 (в качестве примера приведена схема измерения термоэлектронного тока сетки тетрода с катодом косвенного накала).



G—генератор импужьсов: Р1, Р3, Р5, Р6—вриборы для измережия постоянного (переменного) изпряжения; Р3—прибор для измерения импужьсного напряжения; R—измеренствор, V—яспытываемая лампа

Черт. 4

4.1.2. Сопротивление измерительного резистора R должно быть активным. Допускаемое отклонение значения сопротивления этого резистора от установленного в нормативно-технической документации на измерительную установку должно быть в пределах  $\pm 1\%$ .

(Измененная редакция, Изм. № 2).

4.1.3. Генератор импульсов G должен создавать прямоугольные импульсы напряжения отрицательной полярности. При этом:

длительность импульса, измеренияя на уровне 0,5 амплитуды

импульса, должна быть в пределах 10-500 мкс;

длительности фронта и среза импульса, измеренные между уровнями 0,1 и 0,9 амплитуды импульса, не должны превышать 20% длительности импульса, измеренной на уровне 0,5 амплитуды импульса;

выбросы на вершине импульса и неравномерность вершины импульса не должны превышать 10% амплитуды импульса;

частоту следования рекомендуется выбирать в пределах 0,5— 5 Ги. 4.1.4. В качестве прибора P2 применяют электронные осциллографы или импульсные вольтметры. Относительная погрешность осциллографов должна быть в пределах  $\pm 10\,\%$ , погрешность импульсных вольтметров  $\pm 6\,\%$ .

(Измененная редакция, Изм. № 2).

 Подготовка, проведение измерения и обработка результатов.

4.2.1. Устанавливают напряжение накала и напряжения элект-

родов (кроме первой сетки), указанные в стандартах.

4.2.2. На первую сетку лампы вместе с положительным постоянным напряжением подают импульсное напряжение такой амплитуды, при которой во время действия импульса ток анода равен нулю.

4.2.3. По прибору Р2 измеряют падение напряжения на рези-

сторе R.

4.2.4. Термоэлектронный ток сетки  $I_{\rm g1\,te}$  в мкА определяют по формуле

$$I_{g11e} = \frac{U_{\pi}}{R} \cdot 10^{6}, \qquad (2)$$

где  $U_R$  — наибольшее значение напряжения на измерительном резисторе, В:

R — сопротивление измерительного резистора, Ом.

При наличии между электродами тока утечки измеренное значение тока сетки представляет собой сумму термоэлектронного тока этой сетки и тока утечки.