

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ГОСУДАРСТВЕННАЯ СИСТЕМА ОБЕСПЕЧЕНИЯ ЕДИНСТВА ИЗМЕРЕНИЯ

ПРИЕМНИКИ ИЗМЕРИТЕЛЬНЫЕ

МЕТОДЫ И СРЕДСТВА ПОВЕРКИ В ДИАПАЗОНЕ ЧАСТОТ 1—37,5 ГГц

FOCT 8.254-77

Издание официальное

ГОСУДАРСТВЕННЫЯ КОМИТЕТ СТАНДАРТОВ СОВЕТА МИНИСТРОВ СССР Москва

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ГОСУДАРСТВЕННАЯ СИСТЕМА ОБЕСПЕЧЕНИЯ ЕДИНСТВА ИЗМЕРЕНИЙ

ПРИЕМНИКИ ИЗМЕРИТЕЛЬНЫЕ

МЕТОДЫ И СРЕДСТВА ПОВЕРКИ В ДИАПАЗОНЕ ЧАСТОТ 1—37,5 ГГц

ΓΟCT 8.254-77

Издание официальное

РАЗРАБОТАН И ВНЕСЕН Всесоюзным научно-исследовательским институтом физико-технических и радиотехнических измерений [ВНИИФТРИ]

Директор В. К. Коробов
Руководитель темы и исполнитель Л. З. Канель

ПОДГОТОВЛЕН К УТВЕРЖДЕНИЮ Всесоюзным научно-исследовательским институтом метрологической службы [ВНИИМС]

Директор В. В. Сычев

УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета стандартов Совета Министров СССР от 26 июля 1977 г. № 1833

ГОСУДАРСТВЕННЫЯ СТАНДАРТ СОЮЗА ССР

Государственная система обеспечения единства измерений

ПРИЕМНИКИ ИЗМЕРИТЕЛЬНЫЕ

ΓΟCT 8.254—77

Методы и средства поверки в диапазоне частот 1—37.5 ГГц

State system for ensuring the uniformity of measurements. Measuring receivers. Methods and means for verification in frequency range from 1 to 37,5 GHz Взамен ГОСТ 12444—67

Постановлением Государственного комитета стандартов Совета Министров СССР от 26 кюля 1977 г. № 1833 срок яведения установлен

c 01.01 1979 r.

Настоящий стандарт распространяется на измерительные приемники (в дальнейшем — приемники) по ГОСТ 13100—67 классов II, III и устанавливает методы и средства их первичной и периодической поверок в диапазоне частот I—37,5 ГГц.

1. ОПЕРАЦИИ ПОВЕРКИ

При проведении поверки должны быть выполнены следующие операции:

внешний осмотр и опробование (п. 4.1);

определение метрологических параметров (п. 4.2);

определение коэффициента шума (п. 4.2.1);

определение нестабильности показаний приемника (п. 4.2.2); определение погрешности измерения частоты входного сигнала

по частоте (п. 4.2.3);

определение ослабления зеркального канала (п. 4.2.4);

определение коэффициента стоячей волны $K_{ct} \sigma$ входа (п. 4.2.5); определение погрешности измерения температуры шума (п. 4.2.6):

определение погрещности измерения отношения уровней при синусондальном сигнале (п. 4.2.7);

определение погрешности измерения мощности синусоидального сигнала (п. 4.2.8);

определение дополнительной погрешности при измерении уровня импульсных сигналов (п. 4.2.9).

 Π римечакие. Приемники поверяют по параметрам, нормированным в технической документации на поверяемый приемник.

2. СРЕДСТВА ПОВЕРКИ

При проведении поверки должны применяться средства поверки, перечисленные ниже.

Измерительные генераторы сигналов типов Г4-78, Г4-79, Г4-80,

Γ4-81, Γ4-82, Γ4-83, Γ4-109, Γ4-108, Γ4-114, Γ4-115;

измерительные линии типов P1-25, P1-22, P1-3, P1-28, P1-29, P1-30, P1-31;

частотомер типа ЧЗ-38 с блоками ЯЗЧ-42, ЯЗЧ-43, Ч5-13;

калибратор мощности типов КМК-1-3, КМК-3-6, КМК-6-10, КМС-23, КМС-17A, КММ-11A, КММ-7A;

измерительные аттенюаторы типов Д2-33, Д3-30А, Д3-29А,

ДЗ-31А, ДЗ-28А, ДЗ-27А, ДЗ-33А, ДЗ-34А, ДЗ-35А, ДЗ-36А;

развязывающий аттенюатор типов Д5-17, Д5-18, Д5-20, Д5-21, Д5-22 с K_{ст.U} не более 1,05 при ослаблении не менее 10 дБ;

термисторный измеритель мощности типа М3-22:

осциллограф типа С1-67;

вольтметр типа ВЗ-43;

импульсный генератор типа Г5-54;

детекторная секция типов Э7-5, Э7-6, Э7-7 из комплекта прибора У3-29;

направленный ответвитель из комплекта прибора Д1-9:

измеритель отношений напряжений типа В8-6;

генератор шума типа Г2-5Б, Г2-6Б, Г2-8В, Г2-9В, Г2-10В, Г2-25А, Г2-41, Г2-42, Г2-43.

Основные параметры средств поверки приведены в обязательном приложении 1.

Примечания:

 Допусквется применять другие находящиеся в применении средства поверки, прошедшие метрологическую аттестацию в органах государственной метрологической службы и удовлетворяющие по точности требованиям настоящего стан-

дарта.

- 2. Развизывающие аттенюаторы выбирают из серийно выпускаемых. При отсутствии развизывающих аттенюаторов с $K_{\rm CT}U$ не более 1,05 при ослабления ве менее 10 дБ допускается использовать развизывающие аттенюаторы с $K_{\rm CT}U$ более 1,05, но при этом необходимо учитывать погрешность из-за рассогласования при определении погрешности аттенюатора (пп 4.27 и 4.28). Значение погрешности аттенюатора из-за рассогласования рассчитывают по формулам, приведенным в справочном приложении 2.
- 2.2. Погрешность определения параметров приемников (пп. 4.2.3, 4.2.6—4.2.9) не должна превышать ¹/₃ нормируемых погрешностей поверяемых приборов, а погрешность измерения коэффициента стоячей волны (п. 4.2.5) не более 10%.

При определении параметров приемника (пп. 4.2.2, 4.2.4) нестабильность измерительных генераторов не должна превышать 10⁻⁴ по частоте и ±0,1 дБ по уровню за 15 мин, а погрешность встроенного аттенюатора не должна превышать ±1 дБ.

3. УСЛОВИЯ ПОВЕРКИ И ПОДГОТОВКА К НЕЯ

 При проведении поверки приемников должны соблюдаться условия, приведенные в ГОСТ 22261—76, разд. 2.

Допускается проводить поверку в рабочих условиях, если поверяемый приемник и образцовые средства поверки сохраняют свои

метрологические параметры в этих условиях.

3.2. Приемник, представленный на поверку, должен быть укомплектован технической документацией (техническим описанием с инструкцией по эксплуатации, паспортом или выпускным аттестатом, градуировочными графиками и таблицами) и ЗИП.

В паспорте (формуляре) должны быть указаны нормы проверяемых параметров, а также класс точности по ГОСТ 13100—67.

3.3. При проведении поверки необходимо соблюдать требования, указанные в технической документации на поверяемый приемник и средства измерений, используемые при поверке.

 З.4. Параметры проверяют в крайних и средней частотах диапазона (поддиапазона) поверяемого приемника, кроме случаев,

указанных в пп. 4.2.3, 4.2.9.

3.5. Приемник признают годным, если измеренные или вычисленные при поверхе значения его параметров удовлетворяют требованиям, указанным в паспорте (формуляре), и не превышают значений, приведенных в ГОСТ 13100—67 для соответствующих классов точности.

4. ПРОВЕДЕНИЕ ПОВЕРКИ

4.1. Внешний осмотр и опробование

- 4.1.1. При проведении внешнего осмотра должно быть установлено соответствие комплектности, маркировки, обозначений на шкалах, техническому описанию поверяемого приемника, а также отсутствие механических повреждений, которые могут повлиять на исправность приемника (например плохое крепление ручек управления, повреждение стрелочных приборов, заедание ручек перестройки частоты, ручек регулировок аттенюаторов, повреждение изоляции или плохая заделка межблочного и сетевого кабелей и т. д.). Особенно следует обратить внимание на исправность и чистоту высокочастотных соединителей.
- 4.1.2. При опробовании следует руководствоваться техническим описанием поверяемого приемника. Необходимо удостовериться в возможности калибровки приемника не менее чем в 10 точках его частотного диапазона, равномерно распределенных по нему, а также в возможности установки заданного тока смесителя во всем частотном диапазоне приемника. Кроме того, проверяют настройку приемника на слух и его работу с внешними приборами.

4.1.3. При обнаружении дефектов прибор бракуют.

4.2. Определение метрологических параметров

4.2.1. Определение коэффициента шума

4.2.1.1. Коэффициент шума определяют в режиме квадратичного детектирования. Включают калибровочный генератор и, перестраивая приемник по частоте определяют частоту f', на которой коэффициент шума наибольший (на этой частоте показания приемника минимальные).

Коэффициент шума К и измеряют на частоте f' следующим об-

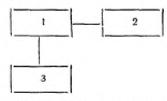
разом:

при включенном калибровочном генераторе ручками усиления приемника устанавливают указатель его индикатора на числовую отметку во второй половине шкалы а, ;

калибровочный генератор включают и отсчитывают показания

индикатора приемника с. .

Коэффициент шума вычисляют по формуле


$$K_{\rm m} = \frac{T_{\rm gas}}{T_0 \left(\frac{\alpha_1}{\alpha_0} - 1\right)}, \qquad (1)$$

где $T_{\text{кал}}$ -- избыточная температура шума калибровочного генератора, значение которого приведено в паспорте на поверяемый приемник;

 $T_0 = 293$ K.

4.2.1.2. Приемник признают годным по указанному параметру, если вычисленное значение коэффициента шума удовлетворяет требованиям п. 3.5, в противном случае его бракуют. 4.2.2. Определение нестабильности показаний приемника п

4.2.2.1. При определении нестабильности показаний приемники соединяют по схеме черт. 1.

1—измерительный генератор сигиалов; 2-воверяемый приемикк: 3-частотомер

Черт. 1

Измерительный генератор настранвают на требуемую частоту в режиме работы «НГ» (непрерывная генерация).

Уровень сигнала генератора регулируют до установления показания на индикаторе а, , равного 90% полного отклонения шкалы. Через 10 мин отмечают показания на индикаторе приемника α₂ (предварительно следует убедиться, что частота и уровень сигнала генератора не изменились).

Нестабильность показаний приемника η в процентах опреде-

ляют по формуле

$$\eta = \frac{\alpha_i - \alpha_g}{\alpha_i} - 100. \tag{2}$$

- 4.2.2.2. Нестабильность показаний необходимо проверять на узкой полосе пропускания поверяемого прибора при уровнях сигнала на входе приемника примерно 10⁻⁸ Вт на частотах, указанных в п. 3.4.
- 4.2.2.3. Приемник признают годным по данному параметру, если определенные значения нестабильности удовлетворяют требованиям п. 3.5, в противном случае его бракуют.

4.2.3. Определение погрешности измерения частоты входного си-

гнала по частоте

4.2.3.1. Погрешность измерения частоты входного сигнала δf определяют следующим образом:

приборы соединяют по схеме, указанной на черт. 1;

измерительный генератор сигнала, работающий в режиме «НГ» настраивают на заданную частоту, а уровень сигнала на выходе генератора устанавливают на 20—30 дБ выше нижнего предела измерения мощности поверяемым приемником (по квадратичной шкале);

приемник настранвают на сигнал генератора и считывают значение его частоты по частотной шкале поверяемого приемника.

4.2.3.2. Значение погрешности бі на данной частоте в процентах вычисляют по формуле

$$\delta f_i = \frac{f_{ii} - f_{0i}}{f_{0i}} , \qquad (3)$$

где f_{0t} — значение частоты сигнала, измеренное частотомером, f_{nt} — значение частоты сигнала, измеренное приемником.

4.2.3.3. Погрешность по частоте определяют на крайних и 5—6 равномерно распределенных по диапазону приемника частотах.

4.2.3.4. Прибор признают годным по данному параметру, если значение определенных погрешностей по частоте удовлетворяет требованням п. 3.5, в противном случае его бракуют.

4.2.4. Определение ослабления зеркального канала

4.2.4.1. Для измерения ослабления сигнала частоты зеркального канала приборы соединяют по схеме, указанной на черт. 1. Уровень сигнала генератора в режиме «НГ» устанавливают ниже верхнего предела мощности измеряемого приемником на величину подавления зеркального канала в децибелах, указанную в технической документации на поверяемый приемник. Приемник настраи-

вают на частоту генератора f_0 , стрелку выходного прибора приемника устанавливают во вторую половину шкалы на оцифрованную отметку α ; фиксируют показание шкалы аттенюатора генератора A_1 в децибелах; затем частоту генератора изменяют на значение, равное удвоенной промежуточной частоте приемника

$$f_1 = f_0 + 2f_{np}$$

и $f_2 = f_0 - 2f_{np}$.

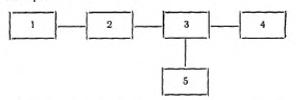
Опорную мощность генератора поддерживают такой же, как и при сипнале частоты \hat{f}_0 , и уменьшают ослабление аттенюатора генератора до значения A_2 , при котором стрелка выходного прибора приемника устанавливается на прежнее деление α .

4.2.4.2. Ослабление по зеркальному каналу Аз в децибелах оп-

ределяют по формуле

$$A_3 = A_2 - A_1$$
. (4)

4.2.4.3. Ослабление по зеркальному каналу определяют на час-


тотах, указанных в п. 3.4.

4.2.4.4. Приемник признают годным по данному параметру, если измеренное значение ослабления по зеркальному каналу удовлетворяет требованиям п. 3.5, в противном случае его бракуют.

4.2.5. Определение коэффициента стоячей волны К_{ст U} входа

приемника

4.2.5.1. Для определения $K_{\rm cr}\, \upsilon$ приборы соединяют по схеме, указанной на черт. 2.

1—измерительный генератор сигналов: 2—развязывающий аттоковтор; 3—намерительная ливия; 4—поверяемый приемник; 5—индикатор Черт. 2

4.2.5.2. Значение К_{ст U} определяют при всех положениях входного делителя приемника. При измерении уровень сигнала на входе приемника не должен превышать предела мощности измеряемого сигнала, указанного в паспорте на поверяемый прибор для каждого положения входного делителя. К_{стU} следует измерять только после настройки приемника на частоту сигнала генератора и при токе смесителя, соответствующем нормальной работе приемника.

4.2.5.3. Прибор признают годным по данному параметру, если измеренные значения удовлетворяют требованиям п. 3.5, в противном случае его бракуют.

4.2.6. Определение погрешности измерения температуры шума 4.2.6.1. Для определения погрешности измерения температуры шума или спектральной плотности мощности шума би приборы соединяют по схеме, указанной на черт. 3.

4.2.6.2. При определении б_ш измерения производят следующим образом:

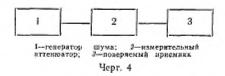
поверяемый приемник калибруют: включают генератор шума и измеряют уровень его сигнала $P_{\text{ш н f}}$; измерения производят не менее чем на 10 частотах, равномерно распределенных по частотному диапазону поверяемого приемника; для каждой частоты производят не менее 10 измерений и определяют погрешность измерения $\delta_{\text{ш f}}$ для каждого измерения по следующей формуле

$$\delta_{\text{III}i} = \frac{P_{\text{III}nl} - P'_{\text{inol}i}}{P_{\text{III}nl}}, \qquad (5)$$

где $P_{\text{III H}t}$ — уровень сигнала генератора шума, измеренный поверяемым приемником;

Р'_{ш оѓ} — действительное значение уровня сигнала генератора
 шума на данной частоте, величину которого определяют по данным, указанным в паспорте на него.

4.2.6.3. Результаты измерений обрабатывают с целью определения значения систематической и случайной погрешностей на каждой частоте. Значение систематической погрешности измерения на данной частоте \(\delta_{iii} \) систем вычисляют по формуле


$$\delta_{ui\ chcth} = \frac{1}{n} \sum_{i=1}^{n} \delta_{ui}, \qquad (6)$$

где n — число измерений.

Значение предельной случайной погрешности Зо определяют по формуле

$$2\sigma = 3\sqrt{\frac{1}{n-1}(\delta'_{\text{to encern}} - \delta_{\text{tot}})^2}, \qquad (7)$$

4.2.6.4. Для определения значения случайной погрешности при измерениях на нижнем пределе измерения температуры шума приборы соединяют по схеме, указанной на черт. 4.

Поверяемый приемник подготовляют к измерению уровня сигнала, соответствующего нижнему пределу измерения температуры шума в соответствии с инструкцией по его эксплуатации; ослабление аттенюатора 2 устанавливают максимальным; включают генератор шума и уменьшением ослабления аттенюатора 2 устанавливают указатель индикатора приемника на числовую отметку во второй половине шкалы; производят измерения не менее 10 раз и результаты измерений обрабатывают с целью определения случайной погрешности измерения по формуле (7). Измерения производят на частотах, указанных в п. 3.4.

4.2.6.5. Приемник признают годным по данному параметру, если вычисленные значения систематической и случайной погрешностей на каждой частоте удовлетворяют требованиям п. 3.5, в про-

тивном случае приемник бракуют.

4.2.7. Определение погрешности измерения отношения уровней при синисоидальном сигнале в А

4.2.7.1. Для определения погрешности в А приборы соединяют по схеме, указанной на черт. 5.

1—измерительный генератор сигналов; 2—развизывающий аттенюатор; 3—измерительный аттенювтор; 4-поверяемый приемник

Черт. 5

Измерения производят следующим образом: настраивают приемник на сигнал генератора и устанавливают органы регулировом в положение, соответствующее измерению верхнего предела мощности. Изменяют уровень сигнала на входе поверяемого прибора изменением ослабления аттенюаторов 3, и изменение ослабления аттенюатора измеряют приемником в соответствии с инструкцией по эксплуатации на него. Изменения ослабления производят через 10 дБ, в пределах диапазона измерения отношений поверяемого приемника.

В каждой точке производят не менее 10 измерений.

4.2.7.2. Результаты измерений обрабатывают с целью определения значений систематической и случайной погрешностей следующим образом:

определяют погрешность измерения отношения для каждого измерения δA_t в децибелах по формуле

$$\delta A_i = A_{\text{HOM}} - A_{\text{B}i}. \tag{8}$$

тде $A_{\text{мом }I}$ — значение изменения ослабления аттенюаторов 3, дБ: — значение разностного ослабления, отсчитываемое по шкале аттенюатора 3, на данной частоте измерения, дБ.

Значение систематической погрешности $\delta A'_{cser}$ на частоте измерения определяют по формуле

$$\delta A'_{\text{encr}} = \frac{1}{n} \sum_{i=1}^{n} \delta A_i,$$
 (9)

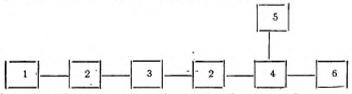
где n — число измерений.

Значение предельной случайной погрешности. Зо на частоте измерения определяют по формуле

$$3\delta' = 3\sqrt{\frac{1}{n-1}(\delta A'_{cut} - \delta A_I)^2}$$
. (10)

4.2.7.3. Измерения производят на частотах, указанных в п. 3.4, если у поверяемого приемника имеются входные делители. Если входные делители отсутствуют, то измерения производят на одной частоте.

4.2.7.4. При отсутствии измерительных аттенюаторов измерения


допускается производить, используя установки типа Д1.

4.2.7.5. Приемник признают годным по данному параметру, если вычисленные по формулам (9) и (10) погрешности удовлетворяют требованиям п. 3.5, в противном случае приемник бракуют.

4.2.8. Определение погрешности измерения мощности синусо-

идального сигнала вр

 4.2.8.1. При определении погрешности измерения мощности приборы соединяют по схеме, указанной на черт. 6.

І-измерительный генератор сигиалов; 2—развязывающий аттенювтор; 5—язмерительный автемовтор; 4—калибратор мощности; 5—териисторный мост, обеспечинающий работу калибратора мощности; 5—поверяемый врвемник

4.2.8.2. Измерения производят в последовательности, приведенной ниже:

устанавливают аттенюатор 3 в положение, соответствующее

разностному ослаблению 30 дВ;

настраивают и калибруют приемник, а его органы регулировок устанавливают в положение, соответствующее измерению верхнего предела мощности;

устанавливают сигнал генератора такой величины, чтобы показания приемника соответствовали верхнему пределу мощности из-

меряемого сигнала;

записывают уровень сигнала, измеренный приемником P_{nl}; уменьшают ток смесителя до нуля или отключают приемник от выхода калибратора мощности;

устанавливают аттенюатор 3 на нуль шкалы и записывают по-

казания шкалы термисторного моста Р мі;

производят не менее 10 измерений на каждой частоте.

4.2.8.3. Результаты измерений обрабатывают следующим образом:

определяют погрешность измерения мощности $\delta_{P\ell}$ для каждого измерения по формуле

$$\delta_{P_{I}} = \frac{P_{HI} - P_{AI}}{P_{XI}} , \qquad (11)$$

где $P_{\,\mathrm{g}i}$ — действительное значение мощности, которое для каждой поверяемой отметки вычисляют по формуле

$$P_{A}t = 10^{-3}P_{M}\alpha'(1-|\Gamma'|^2),$$
 (12)

где α' — коэффициент передачи калибратора мощности, указанный в его паспорте на данной частоте измерения;

[Г"] — модуль коэффициента отражения входа приемника на частоте измерения, значение которого определено по результатам измерений, приведенных в п. 4.2.5;

определяют значение систематической погрешности беспет на каждой частоте по формуле

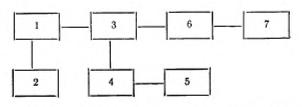
$$\delta_{P \text{ cHCT}}' = \frac{1}{n} \sum_{l=1}^{n} \delta_{P_l}, \qquad (13)$$

где n — число измерений;

определяют значение предельной случайной погрешности (3 от) на каждой частоте по формуле

$$3\sigma' = 3\sqrt{\frac{1}{n-1}\sum_{t=1}^{n} (\delta_{P_t} - \delta'_{P_{CHCT}})^2}$$
 (14)

4.2.8.4. Определение погрешности измерения мощности синусоидального сигнала производят на частотах, указанных в п. 3.4. 4.2.8.5. При отсутствии калибраторов мощности определение погрешности измерения мощности приемника следует производить пометодике, изложенной в справочном приложении 2.


4.2.8.6. Приемник признают годным по данному параметру, если определенные значения погрешностей удовлетворяют требова-

ниям п. 3.5, в противном случае приемник бракуют.

4.2.9. Определение дополнительной погрешности при измерении

уровня импульсных сигналов б_{гов}

 4.2.9.1. Для определения дополнительной погрешности при измерении уровня импульсных сигналов приборы соединяют по схеме, указанной на черт. 7.

І-намерительный генератор сигналов; 2-импульсный генератор;
 З-направленный ответантель;
 4-детекторнах секция;
 3-осциалограф;
 6-измерительный аттенковтор;
 7-поверяемый правиный

Черт. 7

4.2.9.2. Определение дополнительной погрешности производят следующим образом:

устанавливают уровень сигналов генератора примерно равным

10—3 Вт., а ослабление аттенюатора приблизительно 5 дБ;

модулируют генератор сигналов сигналом генератора импульсов, устанавливают длительность модулирующего сигнала 10 мкс, скважность 10, устанавливают режим работы приемника «пиковый»;

устанавливают ручками регулирования усиления приемника стрелку индикатора приемника на оцифрованную отметку во второй половине шкалы и отмечают ослабление измерительного аттеиюатора A₀ в децибелах:

контролируют по осциллографу форму, амплитуду и временные параметры импульсного напряжения, затем длительность импульсов уменьшают до минимальных значений, указанных в технической документации на приемник, увеличивают скважность, при этом по изображению на осциллографе амплитуду импульсов поддерживают постоянной, изменяя выходную мощность генератора (при необходимости приемник подстраивают по частоте);

уменьшают ослабление измерительного аттенюатора до восстановления прежнего положения стрелки индикатора приемника;

записывают показания шкалы аттенюатора A в децибелах, определяют по графику приемника разность поправок для скважности 10 и $\tau=10$ мкс и данной скважности α в децибелах;

вычисляют дополнительную погрешность по формуле

$$\delta_{\text{AOR}} = (A_0 - A) - \alpha.$$
 (15)

4.2.9.3. Дополнительную погрешность б_{доп} определяют на высшей частоте частотного диапазона поверяемого приемника при максимальном значении скважности, указанной в технической документации на приемник.

4.2.9.4. Приемник признают годным по данному параметру, если вычисленные значения басп удовлетворяют требованиям п. 3.5.

в противном случае приемник бракуют.

5. ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

5.1. При положительных результатах поверки, проведенной в органах государственной метрологической службы, выдают свидетельство о государственной поверке по форме, установленной Госстандартом СССР.

 При ведомственной поверке в паспорте поверяемого приемника производят запись, удостоверенную в порядке, установлен-

ном ведомственной метрологической службой.

5.3. При отрицательных результатах поверки, проведенной в органах государственной метрологической службы, свидетельство о поверке аннулируют и выдают справку о непригодности. При отрицательных результатах ведомственной поверки в паспорте приемника делают запись о запрещении выпуска в обращение или применения поверяемого приемника.

ОСНОВНЫЕ ПАРАМЕТРЫ СРЕДСТВ ПОВЕРКИ

Измерительные генераторы сигналов

Тиц прибора	Джапазин ча- етот, ГГц	Нестабильность частогы, не болея	Нремя определения вестабильности, мин	Нестабильность уровия, дБ, не более	Вречя опреде- лени: неста- бильности, мян
Γ4-78 Γ4-79 Γ4-80 Γ4-81 Γ4-82 Γ4-83 Γ4-109 Γ4-108	1,16-1,78 1,78-2,56 2,56-4 4-5,6 6-7,5 7,5-10,5 8,51-12,16 12,6-16,61	10-4	10	0,1	15
Γ4-114 Γ4-115	17,44—25,86 25,86—37,5			0,15	

Измерительные линии

		Погрешность	вч тракт	
Тып прибора	Диапазон частот, ГГц	измерения К _{сти} , ж	Ом	ми
P1-25	1-3	1 .	75	(16/4.6)
P122	17,5		50	(16/7)
P1—3	2.5—10,5	10	50	(10/4,3)
P1—28	8,2412,05			23×10
P1-29	12,05—17,44	- 6		17×8
P1-30	17,44-25,86			11×5,6
P1-31	25,86-37,5			7.2×3.4

Частотомеры

Тип прибора	Диапезон частот, ГГц	Погрешность измерения частоты, не более
Ч3—38 с блокамн ЯЗЧ—41, ЯЗЧ—42, ЯЗЧ—43 с преобразова- телем Ч5—13	0,1-70	10-6

Калибраторы мощности

Тип прибора		Погрешность	ВЧ тракт,	
	Дивпазон частот, ГГц	аттестации во коэффициенту передачи, %	Он	ж
KMK—1—3 KMK—3—6 KMK—6—10 KMC—23A KMC—17A KMC—17A KMM—11A KMM—11A KMM—7A 1—3 3—6 6—10 8.24—12,05 12,05—17,55 KMM—17A 12,05—17,55 25,86 25,86		2,5	75 50 50	(16/4,6) (16/7) (10/4,3) 23×10 17×8 11×5,5 7,2×3,4

Аттенюаторы

Тип прибора	Основање параметры	Погрешность, не более	
	Измерительные		
Д2—33	0—1,5 ГГц, 59 дБ		
ДЗ—30А ДЗ—29	2,14—3,2 ГГц, 80 дБ, 72×34		
ДЗ—31A	3,2—4,9 ГГи, 80 дБ		
Д3—28А	3.94-5.64 ГГи, 80 дВ,		
	48×24		
Д3—27А	5,64-8,24 ГГц, 60 дБ		
Д3—33А Д3—34А	60 дВ, 23×10 12.05—17.44 ГГц, 60 дБ	+0,5%А* дБ	
40-01/4	17×8		
Д3—35А	17.44 - 25.86 ГГн. 60 дВ		
Д3—36А	25.8—37,5 ГГц, 60 дВ,		
	7,2×3,4		
	Развязывающие		
Д5—17	1—3 ГГц, 30 дБ,		
75 10	K _{crtt} <1,3, 75 OM		
Д5—18	3—7 ГГц, 20 дБ, Ксля ≤1.4, 50 Ом		
П5—20	11,5—17,5 ГГп, 30 дБ.		
	Keru ≤1.08		
	17×8		
Д5—21	8,3—11,5 ГГц, 30 дБ,		
	K c ₇₄ ≤1,08, 23×10		
L5—22	7,15—10,2 ГГп. 30 дБ.		
21.72	$K_{erg} \le 1.08, 28.5 \times 12.6$		

А — установленное значение ослабления в децибелах.

Различные средства поверки

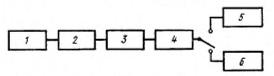
Наимевование и тип прибора	Основные параметры			
Измеритель мощности типа М3—22 Осциллограф типа *C1—67	Пределы измерения 12—6000 мкВт; днапазон частот 0,03—53,6 ГГц ±10% Полоса пропускания 0—10 МГц; развертка 0,1 мкс/дел.—20 мс/дел.; погрешность измерения не более ±5%			
Вольтметр переменно- тока типа ВЗ—42 Импульсный генератор типа Г5—54	Пределы измерения 3 мВ—3В; диапазон частот 10 кГи—1 ГГи; погрешность не более 6% Параметры сигналов F — 0,01—100 кГи; т — 0,1—100 мкс; и=50 В			
Детекторные секции типов 97—5, 97—6, 97—7 Направленный ответвитель из комплекта типа	Погрешность установки длительности, мкс, 0,1 т +0,03 ВЧ тракт 75 Ом; 23×10; 17×8 ВЧ тракт 35×15; 23×10; 17×9			

17×8 Диапазов частот 0,15-20 кГц; чувствительность не более 1 мкВ; погрешность измерения отноше-ния напряжений в пределах 1—10, не более 1,5%

Измеритель отношений

 H_{1-9}

типа В8-6


	ВЧ тракт		14	TEST YES		
Тип прибора	Днапазок частог, ГГц	Ом	мм	Уровень спектрэль- ной плотности мощ- ности шумовьго сигнала, АБ	Погрешность значения спектральной плот- ности мощности щу- можно сигналя, АБ	К _{сти} , не более
Г2—5Б Г2—6Б	0,5—2 0,8—4	75 50	-		+0,3	1,6
Γ2—8Б Γ2—9В Γ2—10В	3,94—5,64 5,64—8,24 8,24—12,05		48×24 35×15 23×10			1,25
Γ2 25B	2,3—4,1		72×34	18		1,3
Γ2-41 Γ2-42 Γ2-43	12,04—17,44 17,44—25,86 25,86—37,5		17×8 11×5,5 7,2×3,4			1,25

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ ПРИЕМНИКОВ

	Требольния к приеминкам по ГОСТ 13100—67 для кляссов				
Основные вараметры	11	HII	1 11	1 10	
	на частотах ниже 4 ГГц		на частотах выше 4 ГГц		
Основная погрешность измерения напряжения или мощности синусо- ндального сигнала, дБ, не более	2,5	-	3	-	
Основная погрешность измерения отношения уровней при синусондаль- ном сигнале, дБ, не более	1,5	1,5	1,5	1,5	
Нижний предел мощности измеряе- мого сигнала, Вт, не более	3-10-12	10-10	10-11	10-9	
Верхний предел мощности измеряе- мого синусоидального сигнала, Вт, не менео	10-4	10-3	10-4	10-5	
К _{сти} входа, не более	2	3	2	3	

ОПРЕДЕЛЕНИЕ ПОГРЕШНОСТИ ИЗМЕРЕНИЯ МОЩНОСТИ СИНУСОИДАЛЬНОГО СИГНАЛА

 Для определения погрешности измерения мощности монохроматического сигнала приборы соединяют по следующей структурной схеме:

 1-измеритольный генератор свгналов; 2, 4-развязывающие аттенюаторы; 3-измерительный аттенюатор; 5-поверяемый приемник; 6-миллипаттметр СВЧ

2. Измерения производят и последовательности:

устанавливают генератор на требуемую частоту; к выходу аттенюатора 4 подключают милливаттметр 6; аттенюатор 3 устанавливают в положение «Нудь» ослабления; регулировкой «Уровень сигнала» генератора устанавливают по ваттенюатор мощность сигнала 10— Вт; аттенюатор 3 устанавливают в положение максимального ослабления; ваттметр отключают от аттенюатора 4 и вместо него подключают поверяемый приемник; приемник подготовляют к измерению верх-

него предела мощности монохроматического сигнала; уменьшением ослабления аттенювтора 3 устанавливают указатель индикатора уровня приемника на оциф-рованную отметку шкалы; по шкале аттенювтора 3 отсчитывают и фиксируют значение А в децибелах.

3. Погрешность поверяемого приемника рассчитывают по формулс

$$\delta_{P_i} = \frac{P_{\text{MAM}i} - P_{Ai}}{P_{Ai}} .$$

где $P_{\text{изм } I}$ — значение уровия сигнала, измеренного приемником:

$$P_{Al} = \frac{10^{-4}}{10^{-10} (1 - |\Gamma_a|^2)};$$

[Гв] — модуль коэффициента отражения входа ваттметра на частоте измерения, значение которого указано в паспорте на него.

4. Измерения следует производить не менее 10 раз на каждой частоте. Обработку результатов измерення производят как указано в п. 4.2.8.3 настоящего стандарта.

Погрешность поверки оп рассчитывают по формуле

$$\delta_n = \sqrt{\delta_B^2 + \delta_A^2 + (2|\Gamma_A||\Gamma_B|)^2 + (2|\Gamma_A||\Gamma_{HI}|)^2 + 90^2}$$

б_в — погрешность ваттметра;

д — погрешность аттенюатора 3;

 $\Gamma_{\rm B}$ — коэффициент отражения ваттметра; $\Gamma_{\rm RH}$ — коэффициент отражения поверяемого приемника; Г_А — коэффициент отражения выхода аттенюатора 4;

3 о — случайная погрешность измерения.

Погрешность разностного ослабления измерительных аттенюаторов из-за рассогласования $\delta A_{\rm p}$ в дебицелах вычисляют по формуле

$$\delta A_p = \pm 8.7 |\Gamma_r| |\Gamma_c| (K'^2 + K^2) + |\Gamma_r| (|\Gamma_1| + |\Gamma_1'|) + |\Gamma_c| (|\Gamma_2| + |\Gamma_2'|)$$

где $|\Gamma_r|$ и $|\Gamma_c|$ — вначения модулей коэффициентов отражения элементов, стоящих на входе Γ_Γ и выходе Γ_C измерительного аттенюатора \Im : $[\Gamma_1]$. $[\Gamma_2]$ и K — значения модулей коэффициентов отражения входа и выхода и модуля коэффициента передачи измерительного аттенюатора при первом отсчете;

 $|\Gamma_1'|$, $|\Gamma_2'|$ и K — значения модулей коэффициентов отражения и коэффициента передачи измерительного аттенюатора при втором отсчете.

Редактор Е. З. Усоскина Технический редактор Л. Я. Митрофанова Корректор Р. В. Ананьева

Сдано в набор 01.08.77 Подд. в печ. 28.10.77 1,25 п. д. 1,12 уч.-изд. д. Тир. 12000 Цена 5 ков. Ордена «Знак Почета» Издательство стандартов. Москва, Д-557, Новопресненский пер., З Калужская типография стандартов, ул. Москваская, 256, Зак. 2083