БРОНЗЫ БЕЗОЛОВЯННЫЕ

Методы определения железа

ГОСТ 15027.3—77

Non-tin bronze. Methods for the determination of iron

ОКСТУ 1709

Дата введения 01.01.79

Настоящий стандарт устанавливает титриметрические методы определения железа (при массовой доле железа от 0,4% до 7%), фотометрические методы определения железа (при массовой доле железа от 0,01% до 1%) и атомно-абсорбционный метод определения железа (при массовой доле железа от 0,01% до 7%) в бронзах безоловянных по ГОСТ 18175, ГОСТ 614 и ГОСТ 493.

(Измененная редакция, Изм. № 1, 2).

1. ОБЩИЕ ТРЕБОВАНИЯ

 1.1. Общие требования к методам анализа — по ГОСТ 25086 с дополнением по разд. 1 ГОСТ 15027.1.

(Измененная редакция, Изм. № 2).

2. ТИТРИМЕТРИЧЕСКИЙ МЕТОД ОПРЕДЕЛЕНИЯ ЖЕЛЕЗА

2.1. Сущность метода

Метод основан на восстановлении трехвалентного железа до двухвалентного, титровании двухвалентного железа раствором двухромовокислого калия с потенциометрическим установлением конца титрования или визуальным способом с индикатором дифениламином или натриевой солью дифениламиносульфоновой кислоты.

2.2. Аппаратура, реактивы и растворы

Потенциометр с насыщенным каломельным электродом и платиновым индикаторным электродом.

Кислота соляная по ГОСТ 3118, разбавленная 1:1.

Кислота азотная по ГОСТ 4461, разбавленная 1:1.

Кислота серная по ГОСТ 4204, разбавленная 1:1.

Кислота ортофосфорная по ГОСТ 6552.

Смесь кислот; готовят следующим образом: 300 см³ серной кислоты, разбавленной 1 : 1, и 300 см³ ортофосфорной кислоты разбавляют водой до 1 дм³.

Аммиак водный по ГОСТ 3760 и разбавленный 1:1.

Промывной раствор; готовят следующим образом: $5 \, \mathrm{cm}^3$ раствора аммиака разбавляют водой до $1 \, \mathrm{zm}^3$.

Олово двухлористое ТУ 6—09—5384, раствор 100 г/дм³ готовят следующим образом: 10 г препарата растворяют в 50 см³ концентрированной соляной кислоты и нагревают до прозрачного раствора. После охлаждения раствор доливают водой до 100 см³.

Ртуть двухлористая, раствор 40 г/дм³.

Калий двухромовокислый по ГОСТ 4220, 0,17 или 0,008 моль/дм³ раствор; готовят следующим образом: взвешивают соответственно 4,9037 или 2,4519 г препарата, высушенного в течение 2 ч при

Издание официальное Перепечатка воспрещена

С. 2 ГОСТ 15027.3-77

(160±5) °С, растворяют в воде, переносят в мерную колбу вместимостью 1 дм³ и доливают до метки водой.

1 см³ 0,17 моль/дм³ раствора соответствует 0,005584 г железа, а 1 см³ 0,008 моль/дм³ раствора соответствует 0,002792 г железа.

Дифениламин по ТУ 6—09—54—40, раствор 10 г/дм³ в концентрированной серной кислоте.

Натриевая соль дифениламиносульфоновой кислоты, раствор 2 г/дм³.

Кислота фтористоводородная по ГОСТ 10484.

Аммоний хлористый по ГОСТ 3773.

2.3. Проведение анализа

Навеску сплава массой 1 г помещают в стакан вместимостью 400 см³ и растворяют в 20 см³ азотной кислоты, разбавленной 1:1, при нагревании. Раствор разбавляют водой приблизительно до 200 см³, добавляют раствор аммиака до образования растворимого синего комплекса меди. Раствор выдерживают при (60±5) °C для коагуляции осадка гидроокиси железа.

Осадок отфильтровывают на фильтр средней плотности. Стакан и осадок промывают промывным раствором. Осадок растворяют в 20 см³ горячей соляной кислоты, разбавленной 1 : 1, фильтр промывают 5—6 раз горячей водой и повторяют осаждение гидроокиси железа до полного удаления ионов меди. Осадок после промывки промывным раствором растворяют в 10 см³ горячей соляной кислоты, разбавленной 1:1, и фильтр промывают горячей водой. Раствор нагревают до кипения, восстанавливают трехвалентное железо добавлением нескольких капель раствора двухлористого олова до обесцвечивания раствора и приливают 2—3 капли в избыток. Затем раствор охлаждают, добавляют 5 см³ раствора двухлористой ртути, 15 см³ смеси кислот, разбавляют водой приблизительно до 200 см³ и титруют раствором двухромовокислого капия потенциометрически, применяя насыщенный каломельный электрод и индикаторный платиновый электрод, или прибавляют две капли раствора дифениламина или 1 см³ раствора натриевой соли дифениламиносульфоновой кислоты и титруют до появления фиолетовой окраски раствора.

2.1-2.3. (Измененная редакция, Изм. № 1).

2.3.1. Для броиз с массовой долей кремния до 0.05 %

Навеску сплава массой 2 г (при массовой доле железа от 0,4% до 3%) и массой 1 г (при массовой доле железа свыше 3% до 7%) помещают в стакан вместимостью 400 см³ и растворяют при нагревании в 20 или 10 см³ азотной кислоты, разбавленной 1 : 1. Затем добавляют 5 г хлористого аммония и воды до 200 см³.

2.3.2. Для бронз с массовой долей кремния свыше 0,05%

Навеску сплава массой 2 г (при массовой доле железа от 0,4% до 3%) и массой 1 г (при массовой доле железа свыще 3% до 7%) помещают в платиновую чашку и добавляют 20 или 10 см³ азотной кислоты, разбавленной 1 : 1, и 10—5 капель фтористоводородной кислоты и растворяют при нагревании. Затем добавляют 10 см³ серной кислоты, разбавленной 1:1, и упаривают до белого дыма серной кислоты. Остаток охлаждают, растворяют в воде, раствор переносят в стакан вместимостью 400 см³ и, если необходимо, фильтруют. К фильтрату добавляют 5 см³ азотной кислоты, разбавленной 1 : 1, воды до 200 см³, 5 г хлористого аммония и раствор аммиака до образования синего комплекса меди.

2.3.1, 2.3.2. (Введены дополнительно, Изм. № 1).

2.4. Обработка результатов

2.4.1. Массовую долю железа (X) в процентах вычисляют по формуле

$$X = \frac{V \cdot m_1 \cdot 100}{m},$$

 где V — объем 0,17 или 0,008 моль/дм³ раствора двухромовокислого калия, израсходованный на титрование, см³;

 m_1 — масса железа, соответствующая 1 см³ 0,17 или 0,008 моль/дм³ раствора двухромовокислого калия, г;

т — масса навески сплава, г.

2.4.2. Абсолютные расхождения результатов параллельных определений (d — показатель сходимости) не должны превышать допускаемых значений, приведенных в табл. 1.

Таблина 1

Массовая доля железа, ⊊	d, %	D, %	Массовая доля железа, %	d. %	D, %
От 0,01 до 0,03 Св. 0,03 » 0,05 » 0,05 » 0,10 » 0,10 » 0,20 » 0,2 » 0,4	0,003 0,005 0,008 0,015 0,02	0,007 0,01 0,02 0,04 0,05	Св. 0,4 до 1,0 » 1,0 » 3,0 » 3,0 » 5,0 » 5,0 » 7,0	0,03 0,05 0,10 0,15	0,07 0,1 0,2 0,4

(Измененная редакция, Изм. № 2).

2.4.3. Абсолютные расхождения результатов анализа, полученных в двух различных лабораториях, или двух результатов анализа, полученных в одной лаборатории, но при различных условиях (D — показатель воспроизводимости), не должны превышать значений, приведенных в табл. 1.

2.4.4. Контроль точности результатов анализа

Контроль точности результатов анализа проводят по Государственным стандартным образцам безоловянных бронз, аттестованным в установленном порядке или сопоставлением результатов анализа, полученных титриметрическим и атомно-абсорбционным методами в соответствии с ГОСТ 25086.

2.4.3, 2.4.4. (Введены дополнительно, Изм. № 2).

3. ТИТРИМЕТРИЧЕСКИЙ КОМПЛЕКСОНОМЕТРИЧЕСКИЙ МЕТОД ОПРЕДЕЛЕНИЯ ЖЕЛЕЗА

3.1. Сущность метода

Метод основан на титровании трехвалентного железа раствором трилона Б с применением сульфосалициловой кислоты в качестве индикатора.

3.2. Реактивы и растворы

Кислота азотная по ГОСТ 4461 и разбавленная 1:1.

Кислота соляная по ГОСТ 3118 и разбавленная 1:1 и 1:4.

Аммиак водный по ГОСТ 3760 и разбавленный 1:1 и 1:50.

Кислота сульфосалициловая по ГОСТ 4478, раствор 100 г/дм3.

Соль динатриевая этилендиамин-N, N, N', N'-тетрауксусной кислоты 2-водная (трилон Б) по ГОСТ 10652; 0,025 моль/дм³ раствор; готовят следующим образом: 9,305 г трилона Б растворяют в 500 см³ воды при нагревании, переносят в мерную колбу вместимостью 1 дм³ и доливают до метки водой.

Железо, стандартный образец (СО) № 126 (сталь низкоуглеродистая).

Стандартный раствор железа; готовят следующим образом: 1,005 г CO № 126 растворяют при нагревании в 20 см³ азотной кислоты, разбавленной 1 : 1. Раствор кипятят до удаления окислов азота, охлаждают, переводят в мерную колбу вместимостью 1 дм³, доливают до метки водой и перемешивают.

1 см³ раствора содержит 0,001 г железа.

Установка титра раствора трилона Б

10 см³ стандартного раствора железа помещают в коническую колбу вместимостью 250 см³, добавляют 20 см³ воды и нейтрализуют раствором аммиака, разбавленным 1:1, до перехода синей окраски индикаторной бумаги конго в сиреневую, затем прибавляют 5 см³ соляной кислоты, разбавленной 1:4, доливают водой до 100 см³ и далее анализ ведут, как указано в п. 3.3.

3.3. Проведение анализа

Навеску сплава массой 0,5 г (при массовой доле железа до 3%) и 0,25 г (при массовой доле железа свыше 3%) растворяют при нагревании в 20 см³ азотной кислоты, разбавленной 1:1, в стакане вместимостью 300 см³, разбавляют водой приблизительно до 200 см³ и добавляют раствор аммиака до образования растворимого синего аммиачного комплекса меди. Раствор выдерживают при (60±5) °С для коагуляции гидроокиси железа.

Осадок отфильтровывают на фильтр средней плотности и промывают раствором аммиака, разбавленным 1:50. Осадок смывают горячей водой в стакан, в котором проводилось осаждение, и растворяют в 10 см³ горячей соляной кислоты, разбавленной 1:1.

C. 4 FOCT 15027.3-77

Фильтр промывают горячей водой и повторяют осаждение гидроокиси железа раствором аммиака, фильтрование и промывание осадка. Осадок гидроокиси железа с фильтра смывают горячей водой в коническую колбу вместимостью 250 см³, растворяют в 10 см³ горячей соляной кислоты, разбавленной 1:1, и промывают фильтр горячей водой.

Колбу с раствором нагревают до полного растворения осадка, нейтрализуют раствором аммиака, разбавленного 1:1, до перехода синего цвета индикаторной бумаги конго в сиреневый, прибавляют 5 см³ соляной кислоты, разбавленной 1:4, доливают до 100 см³ и нагревают до 70 °С. Приливают 5 см³ раствора сульфосалициловой кислоты и титруют горячий раствор раствором трилона Б до перехода окраски из буро-красной в лимонно-желтую.

3.4. Обработка результатов

3.4.1. Массовую долю железа (X_t) в процентах вычисляют по формуле

$$X_1 = \frac{V \cdot m_1 \cdot 100}{m}$$

где V — объем раствора трилона \mathbf{b} , израсходованный на титрование, см³;

m, — масса железа, соответствующая 1 см³ 0,025 моль/дм³ раствора трилона Б, г;

т - масса навески сплава, г.

3.4.2. Абсолютные расхождения результатов параллельных определений (d — показатель сходимости) не должны превышать допускаемых значений, приведенных в табл. 1.

(Измененная редакция, Изм. № 2).

- 3.4.3. Абсолютные расхождения результатов анализа, полученных в двух различных лабораториях, или двух результатов анализа, полученных в одной лаборатории, но при различных условиях (D показатель воспроизводимости), не должны превышать значений, приведенных в табл. 1.
 - 3.4.4. Контроль точности результатов анализа проводят по п. 2.4.4.
 - 3.4.3, 3.4.4. (Введены дополнительно, Изм. № 2).

3. ФОТОМЕТРИЧЕСКИЙ 1,10-ФЕНАНТРОЛИНОВЫЙ МЕТОД ОПРЕДЕЛЕНИЯ ЖЕЛЕЗА

4.1. Сущность метода

Метод основан на образовании железом окрашенного комплекса с 1,10-фенантролином или α, α'-дипиридилом при рН 5 в присутствии уксуснокислого натрия и солянокислого гидроксиламина после выделения железа соосаждением с гидроокисью алюминия.

4.2. Аппаратура, реактивы и растворы

Фотоэлектроколориметр или спектрофотометр.

Кислота серная по ГОСТ 4204 и разбавленная 1:1.

Кислота соляная по ГОСТ 3118, разбавленная 1:1.

Кислота азотная по ГОСТ 4461, разбавленная 1:1.

Аммиак по ГОСТ 3760, разбавленный 1:50 и 1:1.

Кислота уксусная по ГОСТ 61.

Натрий уксуснокислый по ГОСТ 199.

Фенолфталеин, раствор в этиловом спирте, 1 г/дм3.

Спирт этиловый ректификованный по ГОСТ 18300.

Аммоний — алюминий сернокислый (алюмоаммонийный квасцы) по ГОСТ 4238, раствор, готовят следующим образом: 10 г квасцов растворяют в 1 дм³ воды с 10 см³ концентрированной серной кислоты.

Аммоний азотнокислый по ГОСТ 22867, раствор 100 г/дм³.

Гидроксиламин солянокислый по ГОСТ 5456, свежеприготовленный раствор 10 г/дм³.

- 1,10-фенантролин, раствор; готовят следующим образом: 2,5 г 1,10-фенантролина растворяют, нагревая в небольшом количестве воды с несколькими каплями соляной кислоты и разбавляют водой до 1 дм³. Сохраняют в темном сосуде.
- α , α' -дипиридил, раствор; готовят следующим образом: 1,5 г α , α' -дипиридила растворяют, нагревая в небольшом количестве воды с несколькими каплями соляной кислоты, и разбавляют водой до 1 дм³. Сохраняют в темном сосуде.

Буферный раствор; готовят следующим образом: 272 г уксуснокислого натрия растворяют в 500 см³ воды, прибавляют 240 см³ уксусной кислоты, фильтруют и доливают водой до 1 дм³.

Реакционная смесь, свежеприготовленная; готовят следующим образом: одну часть раствора солянокислого гидроксиламина смешивают с одной частью 1,10-фенантролина или α , α '-дипиридила и с двумя частями буферного раствора.

Стандартные растворы железа.

Раствор А; готовят следующим образом: 0,5025 г стандартного образца стали № 126 (сталь низкоуглеродистая) растворяют в 20 см³ азотной кислоты, разбавленной 1 : 1. Полученный раствор кипятят до удаления окислов азота, охлаждают, переводят в мерную колбу вместимостью 1 дм³, доливают до метки водой и перемешивают.

1 см3 раствора A содержит 0,0005 г железа.

Раствор Б; готовят в день применения следующим образом: 5 см³ раствора А помещают в мерную колбу вместимостью 100 см³, доливают до метки водой и перемешивают.

1 см³ раствора Б содержит 0,000025 г железа.

(Измененная редакция, Изм. № 1, 2).

4.3. Проведение анализа

4.3.1. Для бронз, не содержащих кремний

Навеску бронзы массой 0,5 г помещают в стакан вместимостью 250 см³, накрывают часовым стеклом и осторожно растворяют при нагревании в 15 см³ азотной кислоты, разбавленной 1 : 1. Стакан с раствором охлаждают, обмывают стенки стакана и стекло небольшим количеством воды и раствор разбавляют водой до 150 см³. Прибавляют 5 см³ раствора алюмоаммонийных квасцов (для бронз, не содержащих алюминий), 10 см³ раствора азотнокислого аммония и аммиак, разбавленный 1:1, до образования растворимого синего комплекса меди. Раствор выдерживают при 60 °С для коагуляции осадка гидроокисей железа и алюминия. Выделившийся осадок отфильтровывают на фильтр средней плотности и промывают раствором аммиака, разбавленным 1:50. Осадок растворяют 10 см³ горячей соляной кислоты, разбавленной 1:1, фильтр тщательно промывают горячей водой, собирая фильтрат в стакан, в котором проводилось осаждение, и вновь осаждают гидроокиси железа и алюминия аммиаком. Осадок отфильтровывают, промывают раствором аммиака, разбавленным 1:50, растворяют 10 см³ горячей соляной кислоты, разбавленной 1:1, и фильтр промывают горячей водой, собирая фильтрат в стакан, в котором проводилось осаждение. Раствор переводят в мерную колбу, разбавляют до соответствующего объема и в зависимости от содержания железа в бронзе отбирают аликвотную часть в соответствии с табл. 3.

Таблица 3

Массоная додя железа. %	Объем раствора, см ³	Объем аликвотной части раствора, см ³	Масса навески, соответ- ствующая аликвотной части раствора. г
До 0,05	50	25	0,25
Св. 0,05 до 0,2	100	10	0,05
* 0,2 * 0,5	100	5	0,025
* 0,5 * 1,0	200	5	0,0125

Аликвотную часть раствора помещают в мерную колбу вместимостью 50 см^3 , доливают водой до 25 см^3 и нейтрализуют аммиаком, разбавленным 1:1, по фенолфталеину, прибавляют 1 см^3 соляной кислоты и 12 см^3 реакционной смеси, доливают до метки водой и перемешивают. Через 30 мин измеряют оптическую плотность на спектрофотометре в кювете длиной 1 см при $\lambda = 510 \text{ нм}$ или на фотоэлектроколориметре с зеленым светофильтром. Раствором сравнения служит раствор контрольного опыта.

(Измененная редакция, Изм. № 1).

4.3.2. Для кремнистых бронз

Навеску броизы массой 0,5 г помещают в платиновую чашку и растворяют при нагревании в 10 см³ азотной кислоты, разбавленной 1:1, и 2—3 см³ фтористоводородной кислоты. После растворения навески раствор охлаждают, добавляют 10 см³ серной кислоты, разбавленной 1:1, и выпаривают до появления белого дыма серной кислоты. Чашку охлаждают, осторожно обмывают стенки чашки водой и растворяют соли в воде при нагревании. Раствор переводят в стакан вместимостью 250 см³, разбавляют водой до 150 см³, прибавляют 5 см³ раствора алюмоаммонийных квасцов и далее анализ ведут, как указано в п. 4.3.1.

4.3.3. Для свиниовых бронз

Навеску бронзы массой 0,5 г растворяют в 15 см³ азотной кислоты, разбавленной 1 : 1, при нагревании в стакане вместимостью 250 см³. После растворения удаляют окислы азота кипячением и переводят раствор в мерную колбу, разбавляют до соответствующего объема и в зависимости от содержания железа в бронзе отбирают аликвотную часть, как указано в табл. 3.

Аликвотную часть раствора помещают в стакан вместимостью 250 см³, добавляют 10 см³ прокипяченной азотной кислоты, разбавленной 1:1, доливают воду до объема около 100 см³ и выделяют медь и свинец электролизом на платиновые цилиндрические электроды в течение 30 мин. После окончания электролиза обмывают электроды небольшим количеством воды в тот же стакан, приливают 5 см³ раствора алюмоаммонийных квасцов и далее анализ ведут, как указано в п. 4.3.1.

4.3.4. Для броиз с массовой долей олова, сурьмы и свинца свыше 0.05 %

Навеску бронзы массой 0,5 г помещают в стакан вместимостью 250 см³ и растворяют в 15 см³ смеси для растворения при нагревании. При неполном растворении по каплям осторожно добавляют бром. После растворения добавляют 10 см³ хлорной кислоты и упаривают раствор при умеренном нагревании до выделения густого белого дыма хлорной кислоты и осветления раствора. Осадок охлаждают, ополаскивают стенки стакана водой, доливают водой до объема 30 см³ и нагревают до растворения солей. Добавляют 5 см³ серной кислоты, разбавленной 1:1, 50 см³ воды и кипятят. После охлаждения раствор фильтруют через плотный фильтр и промывают его 3—5 раз горячей водой. Фильтр отбрасывают. К фильтрату добавляют 5 см³ раствора алюмоаммонийных квасцов и далее анализ проводят, как указано в п. 4.3.1.

(Введен дополнительно, Изм. № 1).

4.4. Построение градунровочного графика

В мерные колбы вместимостью по 50 см³ приливают из микробюретки последовательно 0; 0,2; 0,5; 1,0; 1,5; 2,5; 3,5 и 5,0 см³ раствора Б, доливают водой до 25 см³, приливают 2—3 капли раствора фенолфталенна и нейтрализуют аммиаком, разбавленным 1:1. Далее анализ ведут, как указано в п. 4.3.1.

Раствором сравнения служит раствор, не содержащий железа.

По найденным значениям оптических плотностей растворов и соответствующим им содержаниям железа строят градуировочный график.

4.5. Обработка результатов

4.5.1. Массовую долю железа (X_2) в процентах вычисляют по формуле

$$\ddot{X}_2 = \frac{m \cdot 100}{m_1},$$

где m — масса железа, найденная по градуировочному графику, г;

т. — масса навески сплава, соответствующая аликвотной части раствора, г.

4.5.2. Абсолютные расхождения результатов параллельных определений (d — показатель сходимости) не должны превышать допускаемых значений, приведенных в табл. 1.

(Измененная редакция, Изм. № 2).

4.5.3. Абсолютные расхождения результатов анализа, полученных в двух раздичных лабораториях, или двух результатов анализа, полученных в одной лаборатории, но при различных условиях (D — показатель воспроизводимости), не должны превышать значений, приведенных в табл. 1.

4.5.4. Контроль точности результатов анализа

Контроль точности результатов анализа проводят по Государственным стандартным образцам безоловянных бронз, аттестованным в установленном порядке, или сопоставлением результатов анализа, полученных фотометрическим и атомно-абсорбционным методами в соответствии с ГОСТ 25086.

4.5.3, 4.5.4. (Введены дополнительно, Изм. № 2).

5. ФОТОМЕТРИЧЕСКИЙ СУЛЬФОСАЛИЦИЛАТНЫЙ МЕТОД ОПРЕДЕЛЕНИЯ ЖЕЛЕЗА

5.1. Сущность метода

Метод основан на образовании железом (III) окрашенного в желтый цвет комплекса с сульфосалициловой кислотой в аммиачном растворе при рН 8—10 после выделения железа соосаждением с гидроокисью алюминия.

5.2. Аппаратура, реактивы и растворы

Фотоэлектроколориметр или спектрофотометр.

Кислота азотная по ГОСТ 4461, разбавленная 1:1.

Кислота соляная по ГОСТ 3118, разбавленная 1:1.

Кислота серная по ГОСТ 4204 и разбавленная 1:1.

Аммиак водный по ГОСТ 3760, разбавленный 1:1, 1:50.

Квасцы алюмоаммонийные по ГОСТ 4238, раствор; готовят следующим образом: 10 г квасцов растворяют в 1 дм³ воды с добавлением 10 см³ концентрированной серной кислоты.

Гидроксиламин солянокислый по ГОСТ 5456, свежеприготовленный раствор 100 г/дм³.

Кислота сульфосалициловая по ГОСТ 4478, раствор 200 г/дм3.

Стандартные растворы железа.

Раствор А; готовят следующим образом: 1,005 г стандартного образца № 126 (сталь низкоуглеродистая) растворяют в 20 см³ азотной кислоты, разбавленной 1:1. Полученный раствор кипятят для удаления окислов азота, охлаждают, переводят в мерную колбу вместимостью 1 дм³, доливают до метки водой и перемешивают.

1 см3 раствора A содержит 0,001 г железа.

Раствор Б; готовят в день применения. Для этого 10 см³ раствора А переносят в мерную колбу вместимостью 100 см³, доливают до метки водой и перемешивают.

1 см³ раствора Б содержит 0,0001 г железа.

5.3. Проведение анализа

5.3.1. Для сплавов, не содержащих кремний

Навеску бронзы массой 1 г помещают в стакан вместимостью 250 см³, накрывают часовым стеклом и растворяют при нагревании в 15 см³ азотной кислоты, разбавленной 1:1. После растворения пробы ополаскивают стекло и стенки стакана небольшим количеством воды, добавляют 5 см³ раствора алюмоаммонийных квасцов (для бронз, не содержащих алюминия), раствор разбавляют водой до 100 см³, нагревают до 60—70 °С и добавляют аммиак, разбавленный 1:1, до образования растворимого синего комплекса меди. Раствор выдерживают при 50—60 °С для коагуляции осадка гидроокисей железа и алюминия. Осадок отфильтровывают на фильтр средней плотности, стакан и раствор промывают горячим раствором аммиака, разбавленного 1:50. Осадок растворяют в 10 см³ горячей соляной кислоты, разбавленной 1:1, фильтр тщательно промывают горячей водой в стакан, где проводилось осаждение, и снова проводят осаждение и растворение гидроокисей.

Раствор переводят в мерную колбу вместимостью 100 см³, доливают до метки водой и перемешивают.

В зависимости от содержания железа в пробе отбирают аликвотную часть раствора в соответствии с табл. 5.

Таблица5

Массовая доля железа, %	Аликвотная часть раствора, см ³	Масса навески, соответствующая аликвотной части раствора, г	
До 0,05	_	Весь раствор	
Св. 0,05 до 0,1	50	0,5	
» 0,1 » 0,25	20	0,2	
» 0,25 » 0,5	10	0,1	
» 0,5 » 1	5	0,05	

Аликвотную часть раствора помещают в мерную колбу вместимостью 100 см^3 и разбавляют водой до 50 см^3 (для марганцовистых бронз добавляют 2 см^3 раствора солянокислого гидроксиламина). Через $2 \text{ мин добавляют } 15 \text{ см}^3$ раствора сульфосалициловой кислоты, нейтрализуют аммиаком, разбавленным 1:1, до устойчивого желтого цвета и добавляют $3-4 \text{ см}^3$ аммиака в избыток. Затем раствор доливают до метки водой и перемешивают. Оптическую плотность раствора измеряют на спектрофотометре в кювете длиной $1 \text{ см при } \lambda = 425 \text{ нм или на фотоэлектроколориметре с фиолетовым светофильтром (<math>\lambda = 400 \text{ нм}$) в кювете длиной 2 см.

Раствором сравнения служит раствор контрольного опыта, проведенный через все стадии анализа.

C. 8 FOCT 15027.3-77

5.3.2. Для кремнистых бронз

Навеску бронзы массой 1 г помещают в платиновую чашку и растворяют при нагревании в 10 см³ азотной кислоты и 2—3 см³ фтористоводородной кислоты. После растворения навески раствор охлаждают, добавляют 10 см³ серной кислоты, разбавленной 1:1, и выпаривают до появления белого дыма серной кислоты. Чашку охлаждают, осторожно обмывают стенки чашки водой и растворяют соли в воде при нагревании.

Раствор переводят в стакан вместимостью 250 см³, разбавляют водой до 150 см³, прибавляют 5 см³ раствора алюмоаммонийных квасцов и далее анализ ведут, как указано в п. 5.3.1.

5.3.3. Для свинцовых бронз

Навеску бронзы массой 1 г помещают в стакан вместимостью 250 см³, накрывают часовым стеклом и растворяют при нагревании в 15 см³ азотной кислоты, разбавленной 1 : 1. После растворения пробы удаляют окислы азота кипячением и раствор переводят в мерную колбу вместимостью 100 см³, доливают до метки водой и перемешивают.

В зависимости от содержания железа в пробе отбирают аликвотную часть в соответствии с табл, 5 в стакан вместимостью 250 см³, добавляют 10 см³ прокипяченной азотной кислоты, разбавленной 1:1, доливают воды до объемы около 100 см³ и выделяют медь и свинец электролизом на платиновые цилиндрические электроды в течение 30 мин. По окончании электролиза обмывают электроды небольшим количеством воды в тот же стакан, приливают 5 см³ раствора алюмоаммонийных квасцов, раствор нагревают до 60—70 °С и далее анализ ведут, как указано в п. 5.3.1.

5.4. Построение градунровочного графика

В шесть мерных колб вместимостью по 100 см³ приливают из микробюретки последовательно 0; 1.0; 2,0; 3,0; 4,0 и 5,0 см³ стандартного раствора Б, разбавляют водой до 50 см³ и далее анализ ведут, как указано в п. 5.3.1.

Раствором сравнения служит раствор, не содержащий железа.

По найденным значениям оптических плотностей строят градуировочный график.

5.5. Обработка результатов

5.5.1. Массовую долю железа (X_3) в процентах вычисляют по формуле

$$X_3 = \frac{m \cdot 100}{m_1},$$

где m — масса железа, найденная по градуировочному графику, г;

т, — масса навески, соответствующая аликвотной части, г.

5.5.2. Абсолютные расхождения результатов параллельных определений (d — показатель сходимости) не должны превышать допускаемых значений, приведенных в табл. 1.

(Измененная редакция, Изм. № 2).

- 5.5.3. Абсолютные расхождения результатов анализа, полученных в двух различных лабораториях, или двух результатов анализа, полученных в одной лаборатории, но при различных условиях (D показатель воспроизводимости), не должны превышать значений, указанных в табл. 1.
 - 5.5.4. Контроль точности результатов анализа проводят по п. 4.5.4.
 - 5.5.3, 5.5.4. (Введены дополнительно, Изм. № 2).

6. АТОМНО-АБСОРБЦИОННЫЙ МЕТОД ОПРЕДЕЛЕНИЯ ЖЕЛЕЗА

6.1. Сущность метода

Метод основан на измерении абсорбции света атомами железа, образующимися при введении анализируемого раствора в пламя ацетилен—воздух.

6.2. Аппаратура, реактивы и растворы

Атомно-абсорбционный спектрометр с источником излучения для железа.

Кислота азотная по ГОСТ 4461 и разбавленная 1:1.

Кислота соляная по ГОСТ 3118 и растворы 2 и 1 моль/дм3.

Смесь кислот; готовят следующим образом: объем азотной кислоты смешивают с тремя объемами соляной кислоты.

Кислота фтористоводородная по ГОСТ 10484.

Кислота серная по ГОСТ 4204, разбавленная 1:1.

Водорода перекись по ГОСТ 10929.

Железо металлическое с массовой долей железа не менее 99,9%.

Стандартные растворы железа.

Раствор А; готовят следующим образом: 0,5 г железа растворяют при нагревании в 20 см³ соляной кислоты с добавлением нескольких капель раствора перекиси водорода. Удаляют кипячением избыток перекиси водорода, раствор переносят в мерную колбу вместимостью 1000 см³ и доливают водой до метки.

1 см³ раствора А содержит 0,0005 г железа.

Раствор Б; готовят следующим образом; 20 см³ раствора А помещают в мерную колбу вместимостью 100 см³, добавляют 10 см³ раствора 2 моль/дм³ соляной кислоты и доливают водой до метки. 1 см³ раствора Б содержит 0.0001 г железа.

6.3. Проведение анализа

6.3.1. Для бронз с массовой долей олова и кремния до 0,05 %

Навеску сплава массой, указанной в табл. 7, помещают в стакан вместимостью 250 см³ и растворяют при нагревании в 10 см³ азотной кислоты.

Таблица7

Массовая доля железа, %	Масса навески, г	Объем аликвотной части раствора, см ³	Объем 2 моль/дм ³ раствора соляной кислоты, см ³	Объем раствора после разбавления, см ¹
От 0,01 до 0,2	1	1 2-2	_	100
CB. 0,2 * 2	1	10	10	100
* 2 * 7	0,5	10	25	250

Раствор охлаждают, переносят в мерную колбу вместимостью 100 см³ и доливают водой до метки. При массовой доле железа свыше 0,2% 10 см³ раствора пробы переносят в соответствующую мерную колбу (см. табл. 7), добавляют указанный в табл. 7 объем 2 моль/дм³ раствора соляной кислоты и доливают водой до метки. Измеряют атомную абсорбцию железа в пламени ацетилен—воздух при длине волны 248,3 или 372 нм парадлельно с градуировочными растворами.

(Измененная редакция, Изм. № 2).

6.3.2. Для броиз с массовой долей олова свыше 0,05 %

Навеску сплава массой, указанной в табл. 7, помещают в стакан вместимостью 250 см³ и растворяют при нагревании в 10 см³ смеси кислот. Раствор охлаждают, переносят в мерную колбу вместимостью 100 см³, стенки стакана ополаскивают раствором 1 моль/дм³ соляной кислоты и доливают до метки той же кислотой. При массовой доле железа свыше 0,2% 10 см³ раствора пробы переносят в соответствующую мерную колбу (см. табл. 7) и доливают до метки раствором 1 моль/дм³ соляной кислоты.

Измеряют атомную абсорбцию железа, как указано в п. 6.3.1.

6.3.3. Для бронз с массовой долей кремния свыше 0,05%.

Навеску сплава массой, указанной в табл. 7, помещают в платиновую чашку и растворяют при нагревании в 10 см³ азотной кислоты и 2 см³ фтористоводородной кислоты. После растворения добавляют 10 см³ серной кислоты, разбавленной 1 : 1, и раствор выпаривают до появления белого дыма серной кислоты. Остаток охлаждают, ополаскивают стенки чашки водой и вновь выпаривают до появления белого дыма серной кислоты. Остаток охлаждают и растворяют в воде при нагревании. Раствор переносят в мерную колбу вместимостью 100 см³ и доливают водой до метки. При массовой доле железа свыше 0,2% 10 см³ раствора пробы переносят в соответствующую мерную колбу (см. табл. 7), доливают указанное в табл. 7 количество 2 моль/дм³ раствора соляной кислоты и разбавляют водой до метки. Измеряют атомную абсорбцию железа, как указано в п. 6.3.1.

6.3.4. Построение градуировочного графика

В двенадцать из тринадцати мерных колб вместмостью по 100 см³ помещают 0,5; 1,0; 2,0; 4,0; 6,0 и 8,0 см³ стандартного раствора Б, 2,0; 2,5; 3,0; 3,5; 4,0 и 5,0 см³ стандартного раствора А. Во все колбы добавляют по 10 см³ 2 моль/дм³ раствора соляной кислоты и доливают водой до метки.

Измеряют атомную абсорбцию железа, как указано в п. 6.3.1.

По полученным данным строят градуировочный график.

6.4. Обработка результатов

6.4.1, Массовую долю железа (X_4) в процентах вычисляют по формуле

$$X_4 = \frac{C \cdot V}{m} \cdot 100$$
,

где C — концентрация железа, найденная по градуировочному графику, r/cm^3 ;

V — объем конечного раствора пробы, см³;

м — масса навески, содержащаяся в конечном объеме раствора, г.

6.4.2. Абсолютные расхождения результатов параллельных определений (d — показатель сходимости) не должны превышать допускаемых значений, приведенных в табл. 1.

(Измененная редакция, Изм. № 2).

6.4.3. Абсолютные расхождения результатов анализа, полученных в двух различных лабораториях, или двух результатов анализа, полученных в одной лаборатории, но при различных условиях (D — показатель воспроизводимости), не должны превышать значений, приведенных в табл. 1.

6.4.4. Контроль точности результатов анализа

Контроль точности результатов анализа проводят по Государственным стандартным образцам безоловянных броиз, аттестованным в установленном порядке, или сопоставлением результатов анализа, полученных атомно-абсорбционным и фотометрическим методами анализа в соответствии с ГОСТ 25086.

6.4.3, 6.4.4. (Введены дополнительно, Изм. № 2).

7. ФОТОМЕТРИЧЕСКИЙ СУЛЬФОСАЛИЦИЛАТНЫЙ МЕТОД ОПРЕДЕЛЕНИЯ ЖЕЛЕЗА В КИСЛОЙ СРЕДЕ

7.1. Сущность метода

Метод основан на образовании окрашенного в красно-фиолетовый цвет комплекса трехвалентного железа с сульфосалициловой кислотой в кислой среде в измерении оптической плотности окрашенного раствора.

7.2. Аппаратура, реактивы и растворы

Фотоэлектроколориметр или спектрофотометр.

Кислота азотная по ГОСТ 4461 и разбавленная 1:1.

Кислота соляная по ГОСТ 3118 и разбавленная 1:1.

Смесь кислот для растворения: 5 частей концентрированной азотной кислоты смешивают с 3 частями концентрированной соляной кислоты.

Кислота винная по ГОСТ 5817, раствор 50 г/дм3.

Кислота сульфосалициловая по ГОСТ 4478, раствор 100 г/дм³; готовят следующим образом: 10 г препарата растворяют в 60 см³ воды, нейтрализуют раствором аммиака до рН 2—3 (по универсальной индикаторной бумаге) фильтруют и разбавляют водой до 100 см³.

Аммиак водный по ГОСТ 3760.

Стандартные растворы железа — по п. 5.2.

Медь марки МО по ГОСТ 859.

7.3. Проведение анализа

Для броиз, кроме кремнистых и свинцовистых.

Навеску бронзы массой 1 г при массовой доле железа от 0,01% до 0,1%: 0,5 г — от 0,1% до 0,2%; 0,25 г — от 0,2% до 0,4% и 0,1 г — от 0,1% до 1% помещают в стакан вместимостью 150 см³, добавляют 8 см³ смеси кислот и растворяют сначала на холоде, а затем при нагревании. После растворения навески удаляют оксиды азота кипячением в течение 1-1,5 мин. Раствор охлаждают, разбавляют водой до 40-50 см³, добавляют 5 см³ раствора винной кислоты и нейтрализуют раствором аммиака до начала выпадения основных солей меди и немедленно вновь переводят их в раствор осторожным добавлением при перемещивании соляной кислоты (1 : 1). После растворения осадка добавляют 18 капель избытка той же кислоты. Раствор охлаждают, добавляют 6 см³ сульфосалициловой кислоты, переносят в мерную колбу вместимостью 100 см³, доливают до метки водой и перемещивают. Оптическую плотность раствора измеряют на фотоэлектроколориметре с зеленым светофильтром в кювете 2 см или на спектрофотометре при $\lambda_{\text{макс}} = 490$ нм в кювете 1 см. Раствором сравнения является проба того же сплава, проведенная через весь ход анализа, но без добавления сульфосалициловой кислоты.

7.4. Построение градуировочного графика

В зависимости от массовой доли железа в стаканы вместимостью по 150 см³ помещают навеску меди (от 0,1 до 1 г), добавляют последовательно 0; 1,0; 2,0; 4,0; 6,0; 8,0 и 10,0 см³ стандартного раствора Б железа и по 8 см³ смеси кислот и далее проводят анализ, как указано в п. 7.3.

Раствором сравнения служит раствор, не содержащий железа, в который не добавляют раствор сульфосалициловой кислоты.

По найденным значениям оптических плотностей растворов и соответствующим им массовым долям железа строят градуировочный график.

7.5. Обработка результатов

7.5.1. Массовую долю железа (X_s) в процентах вычисляют по формуле

$$X_5 = \frac{m_1 \cdot 100}{m},$$

где m_1 — массовая доля железа, найденная по градуировочному графику, г;

т — масса навески сплава, г.

- 7.5.2. Абсолютные расхождения результатов параллельных определений (d показатель сходимости) не должны превышать допускаемых значений, приведенных в табл. 1.
- 7.5.3. Абсолютные расхождения результатов анализа, полученных в двух различных лабораториях, или двух результатов анализа, полученных в одной лаборатории, но при различных условиях (D показатель воспроизводимости), не должны превышать значений, приведенных в табл, 1.
 - 7.5.4. Контроль точности результатов анализа проводят по п. 4.5.4.

С. 12 ГОСТ 15027.3-77

ИНФОРМАЦИОННЫЕ ДАННЫЕ

- 1. РАЗРАБОТАН И ВНЕСЕН Министерством цветной металлургии СССР
- УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета стандартов Совета Министров СССР от 20.06.77 № 1614
- 3. B3AMEH FOCT 15027.3-69
- 4. Стандарт полностью соответствует СТ СЭВ 1534-79
- 5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер раздела, пункта. подпункта	Обозначение НТД, на который дана ссылка	Номер раздела, пункта подпункта
ГОСТ 61—75	4.2	ΓΟCT 4478—78	3.2, 5.2, 7.2
ГОСТ 199—78	4.2	ΓΟCT 545679	4.2, 5.2
ΓΟCT 493-79	Вводная часть	ΓΟCT 5817—77	7.2
ГОСТ 614—97	Вводная чась	ΓΟCT 6552-80	2.2
ΓΟCT 859-2001	7.2	ΓΟCT 1048478	2.2, 6.2
ΓΟCT 3118-77	2.2, 3.2, 4.2, 5.2, 6.2,	ΓΟCT 10652-73	3.2
	7.2	ΓΟCT 1092976	6.2
ГОСТ 3760-79	2.2, 3.2, 4.2, 5.2, 7.2	ΓΟCT 18175-78	Вводная часть
ΓΟCT 3773-72	2.2	ΓΟCT 18300-87	2.2, 4.2
ΓΟCT 420477	2.2, 4.2, 5.2, 6.2	ГОСТ 22867—77	4.2
ΓΟCT 4220-75	2.2	ГОСТ 25086—87	1.1, 2.4.4
ΓΟCT 4238-77	4.2, 5.2	ТУ 6-09-5384-88	2.2
ΓΟCT 4461-77	2.2, 3.2, 4.2, 5.2, 6.2,	TY 6-09-5446-89	2.2
	7.2		

- Ограничение срока действия сиято по протоколу № 3—93 Межгосударственного Совета по стандартизации, метрологии и сертификации (ИУС 5-6—93)
- ИЗДАНИЕ с Изменениями № 1, 2, утвержденными в феврале 1983 г., марте 1988 г. (ИУС 6—83, 6—88)