межгосударственный стандарт

СЕРЕБРО

Метод атомно-абсорбционного анализа

ГОСТ 28353.3—89

Silver. Method of atomic-absorption analysis

MKC 39.060 77.120.99 OKCTY 1709

Дата введения 01.01.91

Настоящий стандарт устанавливает атомно-абсорбционный метод определения содержания примесей: золота, меди, железа, платины, палладия, родия, висмута, свинца, сурьмы, цинка, кобальта, никеля, мышьяка, теллура и марганца в серебре с массовой долей серебра не менее 99.9 %.

Стандарт не распространяется на серебро высокой чистоты.

Метод основан на испарении и атомизации раствора пробы в пламени газовой горелки или нагреваемой графитовой печи и измерении атомного поглощения резонансных линий определяемых элементов. Связь величины поглощения с массовой концентрацией элемента в растворе устанавливают с помощью градуировочного графика.

Метод позволяет определять массовые доли примесей в интервалах, приведенных в табл. 1.

Таблица 1

Определяемый элемент	Массовая доля, %	Определяемый элемент	Массовая доля, %
Золото	От 0,0002 до 0,02	Сурьма	От 0,0001 до 0,01
Медь	* 0,0001 * 0,02	Цинк	» 0,0002 » 0,01
Железо	» 0,0002 » 0,04	Кобальт	» 0,0002 » 0,01
Платина	* 0.0002 * 0.02	Никель	» 0,0002 » 0,01
Палладий	* 0,0002 * 0,02	Мышьяк	+ 0,0002 + 0,01
Родий	* 0,0002 * 0,01	Теллур	» 0,0002 » 0,01
Висмут	* 0,0001 * 0,01	Марганец	» 0,0002 » 0,01
Свинец	* 0,0002 * 0,01		

Нормы погрешности результатов анализа для определяемых значений массовых долей примесей с доверительной вероятностью P = 0.95 приведены в табл. 2.

Таблипа 2

Массовая доля примеси, %	Норма погрешности ды, %	Массовая доля примеси, %	Норма погрещности $\Delta_{_{\rm H}},~\%$	
0,00010	± 0,00005	0,0050	± 0,0008	
0.00030	± 0,00008	0.0100	± 0.0015	
0,00050	± 0,00012	0.020	± 0.003	
0.0010	± 0,0002	0.040	± 0.006	
0.0030	± 0,0005			

1. ОБЩИЕ ТРЕБОВАНИЯ

Общие требования к методу анализа и требования безопасности по ГОСТ 28353.0.

Издание официальное

Перепечатка воспрещена

2. АППАРАТУРА, МАТЕРИАЛЫ И РЕАКТИВЫ

Спектрофотометр атомно-абсорбционный, позволяющий работать с пламенами пропан-бутан-воздух, ацетилен-воздух, а также нагреваемой графитовой печью.

Лампы спектральные с полным катодом для определения золота, меди, железа, платины, палладия, родия, висмута, свинца, сурьмы, цинка, кобальта, никеля, мышьяка, теллура и марганца.

Весы аналитические 2-го класса,

Плита электрическая с закрытой спиралью.

Электропечь муфельная с терморегулятором на температуру 900 °C.

Пропан-бутан в баллонах технический по ГОСТ 20448.

Ацетилен растворенный и газообразный технический по ГОСТ 5457.

Аргон газообразный по ГОСТ 10157.

Стандартные образцы состава серебра.

Ступка агатовая.

Пипетки вместимостью 1, 5, 10 см3 с делениями по ГОСТ 29169, ГОСТ 29227-ГОСТ 29230.

Микропипетка поршневая вместимостью 0,01; 0,02 и 0,05 см3.

Колбы мерные вместимостью 25, 50, 100, 1000 см³ по ГОСТ 1770.

Стаканы стеклянные вместимостью 100, 200, 250, 300 см³ по ГОСТ 25336.

Цилиндры мерные вместимостью 10 см^3 и мензурки вместимостью 50, 100, 250, 1000 см^3 по ГОСТ 1770.

Колбы стеклянные конические вместимостью 50 см³ по ГОСТ 25336.

Тигли корундовые.

Фильтры бумажные обеззоленные «синяя лента», «белая лента» по ТУ 6-09-1678.

Кислота соляная особой чистоты по ГОСТ 14261 и разбавленная 1:1, 1:5, 1:20, 1:100.

Кислота азотная особой чистоты по ГОСТ 11125 и разбавленная 1:1.

Кислота серная особой чистоты по ГОСТ 14262 и разбавленная 1:9.

Кислота винная по ГОСТ 5817, раствор 10 г/дм3.

Кадмий сернокислый по ГОСТ 4456.

Буферный раствор сернокислого кадмия, содержащий 5 мг/см³ кадмия: навеску сернокислого кадмия массой 11,4 г помещают в мерную колбу вместимостью 1000 см³, прибавляют 500 см³ воды, перемешивают до растворения соли, доводят до метки водой и перемешивают.

Ниобия пятиокись по ГОСТ 23620.

Водная суспензия пятиокиси ниобия с массовым отношением 1:5: навеску пятиокиси ниобия массой 4,0 г помещают в коническую колбу вместимостью 50 см³, прибавляют 20 см³ воды и перемешивают до образования суспензии.

Никель азотнокислый по ГОСТ 4055.

Раствор азотнокислого никеля (модификатора матрицы), содержащий 1 мг/см³ никеля: навеску азотнокислого никеля массой 4,94 г помещают в мерную колбу вместимостью 100 см³, приливают 50 см³ воды, перемешивают до растворения соли, доводят до метки водой и снова перемешивают.

Бария перекись особой чистоты по ТУ 7-09-03-462.

Серебро высокой чистоты по ТУ 48-1-10.

Золото по ГОСТ 6835.

Железо карбонильное, радиотехническое по ГОСТ 13610.

Мель по ГОСТ 859.

Висмут по ГОСТ 10928.

Свинец высокой чистоты по ГОСТ 22861.

Цинк по ГОСТ 3640.

Сурьма по ГОСТ 1089.

Теллур по ГОСТ 17614.

Никель по ГОСТ 849.

Кобальт по ГОСТ 123.

Палладий в порошке по ГОСТ 14836.

Платина в порошке по ГОСТ 14837.

Мышьяк металлический особой чистоты по НТД.

Марганец металлический по ГОСТ 6008.

Родий в порошке по ГОСТ 12342 или родий треххлористый четырехводный по ТУ 6-09—2024.

Растворы, содержащие по 2 мг/см³ висмута, железа, меди и никеля: навеску каждого из перечисленных металлов массой 200 мг растворяют в 10 см³ раствора азотной кислоты (1:1) при нагревании. Раствор упаривают до объема 2—3 см³, прибавляют 20 см³ раствора соляной кислоты (1:5), переносят в мерную колбу вместимостью 100 см³, доводят до метки этим же раствором кислоты и перемешивают.

Раствор, содержащий 2 мг/см³ свинца: навеску свинца массой 200 мг растворяют в 10 см³ раствора азотной кислоты (1:1) при нагревании. Раствор переносят в мерную колбу вместимостью 100 см³, доводят до метки водой и перемешивают.

Растворы, содержащие по 2 мг/см³ золота, платины, сурьмы, мышьяка и теллура: навеску каждого из перечисленных металлов массой 200 мг растворяют в 20 см³ смеси соляной и азотной кислот (3:1) при нагревании. Раствор упаривают до объема 2—3 см³, прибавляют 20 см³ раствора соляной кислоты (1:5), переносят в мерную колбу вместимостью 100 см³, доводят до метки этим же раствором кислоты и перемешивают.

Растворы, содержащие по 2 мг/см³ кобальта, марганца и цинка: навеску каждого из перечисленных металлов массой 200 мг растворяют в 10 см³ раствора соляной кислоты (1:1) при нагревании. Растворы переносят в мерные колбы вместимостью 100 см³, доводят до метки раствором соляной кислоты (1:5) и перемешивают.

Раствор, содержащий 2 мг/см³ палладия: навеску палладия массой 200 мг растворяют в 20 см³ азотной кислоты при нагревании, раствор упаривают до объема 3—5 см³, приливают 20 см³ раствора соляной кислоты (1:5), перепосят в мерную колбу вместимостью 100 см³, доводят до метки этим же раствором кислоты и перемешивают.

Раствор, содержащий 2 мг/см³ родия, готовят одним из приведенных способов:

- 1) Навеску родия (в виде порошка) массой 200 мг тщательно перемешивают с 5-кратным количеством перекиси бария, перетирают в агатовой ступке, переносят в корундовый тигель и спекают в течение 2—3 ч при температуре 800—900 °C (тигель ставят в холодный муфель). Спек охлаждают, переносят в стакан вместимостью 200 см³, смачивают водой и растворяют в растворе соляной кислоты (1:1) до полного растворения. Если после растворения спека в растворе соляной кислоты остается остаток, спекание и растворение повторяют. Полученный раствор разбавляют водой до объема 50 см³ и осаждают сульфат бария добавлением раствора серной кислоты (1:9) порциями при постоянном перемешивании. Раствор нагревают до температуры 60—70 °C. Через 2—3 ч проверяют полноту осаждения сульфата бария и отфильтровывают его через фильтр «синяя лента» или двойной фильтр «белая лента» в мерную колбу вместимостью 100 см³. Осадок на фильтре промывают 4—5 раз горячим раствором соляной кислоты (1:5), а затем 5—6 раз горячей водой. Раствор доводят до метки раствором соляной кислоты (1:5) и перемешивают.
- Навеску треххлористого родия массой 546,7 мг растворяют в 20 см³ раствора соляной кислоты (1:1) при слабом нагревании, раствор охлаждают, переносят в мерную колбу вместимостью 100 см³, доводят до метки раствором соляной кислоты (1:5) и перемешивают.

Раствор А: в мерную колбу вместимостью 100 см³ помещают по 5 см³ растворов золота, железа, меди, никеля, свинца, висмута, сурьмы, кобальта, цинка, платины, палладия, родия, мышьяка, теллура и марганца, доводят до метки раствором соляной кислоты (1:5) и перемешивают.

1 см³ раствора содержит по 100 мкг каждого из определяемых элементов.

Раствор Б: в мерную колбу вместимостью 100 см³ помещают 10 см³ раствора А, доводят до метки раствором соляной кислоты (1:5) и перемешивают.

1 см³ раствора содержит по 10 мкг каждого из определяемых элементов.

3. ПОДГОТОВКА К АНАЛИЗУ

3.1. Подготовка графитовых трубок атомизатора

Обработку графитовых трубок пятиокисью ниобия проводят следующим образом: графитовые трубки погружают в водную суспензию пятиокиси ниобия и выдерживают в течение 2—3 ч, затем трубки высушивают в графитовой печи в течение 60 с при температуре 100 °C, обжигают в течение 30 с при температуре 1000 °C и в течение 10 с при температуре 2650 °C в режиме остановки потока инертного газа («газ-стоп»). Температурную обработку повторяют не менее двух раз.

3.2. Подготовка проб к анализу

3.2.1. Для выполнения анализа отбирают две навески серебра массой по 0,2—2,5 г (табл. 3), каждую из которых помещают в стакан вместимостью 200—250 см³ и очищают поверхность серебра по ГОСТ 28353.0.

Навеску растворяют при слабом нагревании в 10 см³ раствора азотной кислоты (1:1). После полного растворения серебра прибавляют 5 см³ соляной кислоты и растворяют золото и родий при слабом нагревании в течение 3—5 мин. Раствор разбавляют горячей водой до объема 150—200 см³ и

C. 4 FOCT 28353.3-89

сразу же фильтруют в стакан вместимостью 300 см³ через фильтр «синяя лента», предварительно промытый 4—5 раз горячим раствором соляной кислоты (1:100) и 2—3 раза горячей водой, не перенося осадок хлорида серебра на фильтр. Осадок промывают декантацией 5—6 раз горячим раствором соляной кислоты (1:100). Полученный раствор (фильтрат 1) упаривают до объема 2—3 см³.

Таблица 3

Массовая доля примеси, %	Масса навески, г	Объем раствора пробы, см ³
От 0,0001 до 0,0005 включ.	2,5	10-25
Св. 0,0005 » 0,0020 »	1,0-2,0	25
* 0,002 * 0,020 *	0,5-1,0	25-50
* 0.02 * 0.05 *	0,2-0,5	50

- 3.2.2. Фильтр, через который проводилось фильтрование, помещают в стакан с осадком хлорида серебра, прибавляют по 10 см³ серной и азотной кислот. Пробу выдерживают при комнатной температуре до прекращения бурной реакции, затем нагревают до выделения густых паров серного ангидрида. Стакан переставляют на переднюю часть плиты, осторожно по стенке стакана прибавляют 4—5 капель азотной кислоты и снова нагревают до густых паров серного ангидрида. Операцию прибавления азотной кислоты повторяют до полного растворения хлорида серебра. Раствор упаривают до влажных солей, охлаждают, прибавляют 10 см³ азотной кислоты, 100—150 см³ горячей воды и нагревают до растворения солей. Затем к раствору прибавляют 3 см³ соляной кислоты и сразу же фильтруют в стакан с упаренным фильтратом 1 через фильтр «синяя лента», предварительно подготовленный, как указано в п. 3.2.1. Осадок промывают декантацией 6—7 раз горячим раствором соляной кислоты (1:100) и фильтрат упаривают до объема 2—3 см³.
- 3.2.3. К упаренному раствору прибавляют 3 см³ соляной кислоты, раствор переносят в мерную колбу вместимостью 25—50 см³, доводят до метки водой и перемешивают. Если массовые доли определяемых элементов менее 0,004 % и число их не более пяти, разбавление раствора допускается проводить до объема 10 см³ в мерном цилиндре вместимостью 10 см³.

Полученный раствор поступает на анализ.

Одновременно через все стадии подготовки проб к анализу проводят два контрольных опыта на чистоту реактивов.

3.2.4. Определение золота, платины, теллура, мышьяка, цинка, меди, никеля, кобальта и железа допускается проводить без переосаждения хлорида серебра (п. 3.2.1) из фильтрата 1 после разбавления раствора, как указано в п. 3.2.3.

3.3. Приготовление растворов сравнения

3.3.1. Для определения золота, меди, железа, платины, палладия, родия, висмута, свинца, сурьмы, цинка, кобальта, никеля, теллура и марганца при атомизации проб в пламени используют растворы сравнения, приготовленные из растворов А и Б.

Растворы сравнения с массовой концентрацией определяемых элементов 0,2; 0,5; 1,0; 2,0 и 5,0 мкг/см³: в мерные колбы вместимостью 50 см³ отбирают аликвотные части раствора А или Б (табл. 4), доводят до метки раствором соляной кислоты (1:5) и перемешивают.

Таблица 4

Раствор сравнения	Объем вводимого ряствора А или Б, см ³	Массовая концентрация элементов мкг/см ³
	Раствор Б	
PC-1 PC-2	1,0 2,5	0,2 0,5
	Раствор А	
PC-3 PC-4 PC-5	0,5 1,0 2,5	1,0 2,0 5,0

3.3.2. Для определения сурьмы, висмута, мышьяка, платины и теллура при атомизации проб в графитовой печи используют растворы сравнения, проведенные через все стадии подготовки проб к анализу.

Растворы с массовой концентрацией определяемых элементов 0,2; 0,4; 0,6 и 1,0 мкг/см³: отбирают четыре навески серебра высокой чистоты массой 0,5 г, каждую из которых помещают в стакан вместимостью 250 см³, очищают поверхность серебра по ГОСТ 28353.0 и растворяют серебро при слабом нагревании в 10 см³ раствора азотной кислоты (1:1). В стаканы вводят соответственно 1,0; 2,0; 3,0 и 5,0 см³ раствора Б. Растворы разбавляют горячей водой до объема 150 см³, прибавляют по 2 см³ соляной кислоты и далее приготовление растворов проводят по пп. 3.2.1, 3.2.2 и 3.2.3. При разбавлении растворов по п. 3.2.3 используют мерные колбы вместимостью 50 см³.

Растворы сравнения с массовой концентрацией определяемых элементов 0,1; 0,2; 0,3 и 0,5 мкг/см³: в мерные колбы вместимостью 25 см³ помещают по 5 см³ полученных выше растворов, прибавляют по 5 см³ раствора винной кислоты при определении сурьмы или по 5 см³ раствора соляной кислоты (1:20) при определении висмута, мышьяка, платины, теллура и перемешивают.

4. ПРОВЕДЕНИЕ АНАЛИЗА

4.1. Анализ с атомизацией проб в пламени

Атомно-абсорбционный спектрофотометр готовят к работе и включают согласно инструкции по эксплуатации прибора. Измерения атомного поглощения элементов проводят по аналитическим спектральным линиям с длинами волн, приведенными в табл. 5.

Таблина 5

Определяемый элемент	Длина волны, ни	Определяемый элемент	Длина возны, нм
Золото	242,80	Сурьма	217,58
Медь	324,75	Цинк	213,86
Железо	248,33	Кобальт	240,72
Платина	265,94	Никель	232,00
Палладий	247,64	Мышьяк	193,70
Родий	343,49	Теллур	214,28
Висмут	223,06	Марганец	279,48
Свинец	283,31		

Способы подготовки проб к анализу и пламя, используемое для определения различных элементов, приведены в табл. 6.

Таблица 6

Определяемые элементы	Способ подготовки проб	Пламя	
Золото, палладий, теллур, цинк, медь. никель, ко- бальт, марганец, железо, свинец, висмут, сурьма Растворение навески в растворе азотной кислоть осаждение хлорида серебра с переосаждением		Пропан-бутан-воздух или ацетилен-воздух	
Золото, медь, никель, ко- бальт, железо, цинк, теллур (1:1) и соляной кислоте, осаждение хлорида серебра		То же	
Родий Растворение навески в растворе азотной кислоты (1:1) и соляной кислоте, осаждение хлорида серебра с переосаждением, добавление буферного раствора*		Пропан-бутан-воздух или ацетилен-воздух (окислительное пламя с избытком окислителя)	
Платина	Растворение навески в растворе азотной кислоты (1:1), осаждение хлорида серебра или осаждение хлорида серебра с персосаждением, добавление буферного раствора*	То же	

В колбу вместимостью 25 см³ отбирают 5 см³ раствора анализируемой пробы или раствора сравнения, добавляют 5 см³ буферного раствора сернокислого кадмия и перемешивают.

Растворы сравнения и растворы анализируемых проб последовательно распыляют в пламя газовой горелки и измеряют величину атомного поглощения элемента. Для каждого элемента выполняют не менее двух измерений и вычисляют среднее значение поглощения. Среднюю величину

C. 6 FOCT 28353.3-89

поглощения для растворов контрольного опыта вычитают из величины поглощения определяемого элемента.

Градуировочный график строят в координатах: величина поглощения (среднее из измеренных значений) — массовая концентрация определяемого элемента в растворе сравнения

По среднему значению величины поглощения с помощью градуировочного графика находят массовую концентрацию определяемого элемента в растворе анализируемой пробы.

4.2. Анализ с атомизацией проб в графитовой печи (типа ХГА)

Определение массовых долей висмута, теллура, сурьмы и платины менее 0,005 %, а также мышьяка проводят при атомизации проб в графитовой печи. Условия атомизации в печи XFA-74 приведены в табл. 7.

Таблипа 7

Объем Определяемый вводимого элемент раствора,	Условия атомизации						
	Высушивание		Озоление		Атомизация		
3.TEMER)	емент раствора, × 10 ³ , ся ³	Температура, °С	Время, с	Температура, "С	Время, с	Температура, "С	Время, с
Висмут	20	150	40	1000	25	2650	15
Сурьма	20	150	40	1000	25	2650	15
Платина	50	150	60	1800	25	2650	20
Теллур	20	150	40	1000	25	2650	1.5
Мышьяк	10-20	150	40	1200	25	2650	10

На стадии атомизации используют режимы «газ-стоп» или «минимального потока инертного газа», рекомендуемые в инструкции по эксплуатации прибора.

П р и м е ч а н и е.При использовании графитовой печи другого типа условия атомизации проб выбирают экспериментально.

Растворы сравнения и растворы анализируемых проб последовательно вводят в графитовую печь, включают программное устройство и нагревают печь по заданной программе (табл. 7). Учет неселективного поглощения проводят с помощью дейтериевого фонового корректора.

При определении мышьяка используют графитовые трубки, обработанные оксидом ниобия. После введения раствора сравнения или раствора анализируемой пробы дополнительно в графитовую печь вводят 10·10⁻³ см³ раствора азотнокислого никеля (модификатора матрицы).

При определении сурьмы во все анализируемые растворы добавляют раствор винной кислоты. С этой целью в колбу вместимостью 25 см³ отбирают 2 см³ раствора пробы, добавляют 2 см³ раствора винной кислоты и перемешивают. Для разбавления растворов при определении сурьмы используют раствор винной кислоты, а при определении висмута, мышьяка, теллура и платины — раствор соляной кислоты (1:20).

Измерение величины поглощения и построение градуировочного графика проводят в соответствии с п. 4.1.

5. ОБРАБОТКА РЕЗУЛЬТАТОВ

5.1. Массовую долю определяемого элемента-примеси (X) в процентах рассчитывают по формуле

$$X = \frac{e \cdot V \cdot k}{m} \cdot 10^{-4},$$

где с — массовая концентрация элемента, найденная по градуировочному графику, мкг/см³;

V — объем основного раствора пробы, см³;

коэффициент, соответствующий степени разбавления основного раствора;

т — масса навески, г.

За результат анализа принимают среднее арифметическое значение двух результатов параллельных определений. 5.2. Расхождение результатов параллельных определений (разность между большим и меньшим из двух результатов параллельных определений) и расхождение результатов анализа (разность между большим и меньшим из двух результатов анализа) не должны превышать значений абсолютных допускаемых расхождений, установленных с доверительной вероятностью P = 0.95 и приведенных в табл. 8.

Таблица 8

Массовая доля элемента, %	Абсолютное допускаемое расхождение, %	Массовая доля элемента, %	Абсолютное допускаемое расхождение, %
0,00010	0,00006	0,005	0,001
0,00030	0.00010	0,010	0,002
0,00050	0.00015	0.020	0,004
0,0010 0,0030	0,0002 0,0005	0,040	0,007

Для промежуточных значений массовых долей определяемых элементов допускаемые расхождения рассчитывают методом линейной интерполяции.

6. КОНТРОЛЬ ТОЧНОСТИ АНАЛИЗА

Контроль точности анализа проводят по стандартным образцам состава серебра в соответствии с π . 15 ГОСТ 28353.0.

С. 8 ГОСТ 28353.3-89

ИНФОРМАЦИОННЫЕ ДАННЫЕ

 РАЗРАБОТАН И ВНЕСЕН Главным управлением драгоценных металлов и алмазов при Совете Министров СССР

РАЗРАБОТЧИКИ

- В.Д. Малых, канд. физ.-мат. наук (руководитель темы); Т.Д. Горностаева, канд. хим. наук; Г.Е. Еркович, канд. физ.-мат. наук; М.В. Усольцева; Т.П. Седых; Л.В. Потанина
- УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по управлению качеством продукции и стандартам от 29.11.89 № 3523
- 3. BЗАМЕН ГОСТ 13638.2-79
- 4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на Номер пункта, Обозначени который дана ссыдка раздела		Обозначение НТД, на который дана ссылка	Номер пункта, раздела
FOCT 123-998	2	ΓΟCT 14261-77	2
ГОСТ 849-97	2	ΓΟCT 14262-78	2
ΓΟCT 859-2001	2	ΓΟCT 14836-82	2
ΓΟCT 1089-82	2	ΓΟCT 1483779	2
ΓΟCT 1770-74	2	ΓΟCT 17614-80	2
ΓΟCT 3640-79	2	ΓΟCT 20448-90	2
ΓΟCT 4055-78	2	FOCT 22861-93	2
ΓΟCT 4456-75	2	FOCT 23620-79	2
FOCT 5457-75	2	ΓOCT 25336-82	2
FOCT 5817-77	2	ΓΟCT 28353.0-89	1; 3.2.1; 3.3.2; 6
FOCT 6008-90	2	FOCT 29169-91	2
ГОСТ 6835-2002	2	ГОСТ 29227-91-ГОСТ 29230-91	2
ΓΟCT 10157-79	2	ТУ 6-09-03-462-78	2
FOCT 10928-90	2	ТУ 6-09-1678-86	2
ГОСТ 11125-84	2	ТУ 6-09-2024-78	2
ΓΟCT 12342-81	2	TY 48-1-10-87	2
FOCT 13610-79	2	1277072 (27)	

- Ограничение срока действия снято по протоколу № 5—94 Межгосударственного совета по стандартизации, метрологии и сертификации (ИУС 11-12—94)
- 6. ПЕРЕИЗДАНИЕ, Декабрь 2005 г.

Редактор Л.А. Шебаровина Технический редактор Н.С. Гришинова Корректор М.И. Першина Компьютерная верстка Л.А. Круговой

Сдано в набор 14.12.2005. Подписано в печать 23.01.2006. Формат 60 × 84 1/8. Бумага офсетная. Гарнитура Таймс. Печать офсетная. Усл. печ. л. 2,79, Уч.-изд. л. 1,90. Тираж 57 экз. Зак. 33. С 2358.

> ФГУП «Стандартинформ», 123995 Москва, Гранатный пер., 4. www.gostinfo.ru info@gostinfo.ru Набрано во ФГУП «Стандаргинформ» на ПЭВМ

Отпечатано в филиале ФГУП «Стандартинформ» — тип. «Московский печатник», 105062 Москва, Лялин пер., 6