КОНЦЕНТРАТЫ СВИНЦОВЫЕ

ФОТОМЕТРИЧЕСКИЙ И ТИТРИМЕТРИЧЕСКИЙ МЕТОДЫ ОПРЕДЕЛЕНИЯ МЫШЬЯКА

Издание официальное

B3 9-98

межгосударственный стандарт

КОНПЕНТРАТЫ СВИНЦОВЫЕ

Фотометрический и титриметрический методы определения мышьяка

ГОСТ 14047.5—78

Lead concentrates. Determination of arsenic.

Photometric and titrimetric methods

OKCTY 1725

Дата введения 01.01.80

Настоящий стандарт распространяется на свинцовые концентраты всех марок и устанавливает фотометрический и титриметрический методы определения массовой доли мышьяка от 0,01 % и выше.

(Измененная редакция, Изм. № 2).

1. ОБЩИЕ ТРЕБОВАНИЯ

Общие требования к методам анализа — по ГОСТ 27329.

1а. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

1а.1. Свинцовый концентрат содержит в виде минералов соединения свинца, цинка и меди (сульфиды, сульфаты, карбонаты) и относится согласно ГОСТ 12.1.005 к веществам I класса опасности, токсичен, пожаро- и взрытобезопасен.

Вид опасности — отравление. Пыль свинцового концентрата поступает в организм работающих через органы дыхания, желудочно-кишечный тракт и кожу, вызывая изменения в нервной системе, крови, сосудах, обменные и эндокринные нарушения и изменения желудочно-кишечного тракта.

(Измененная редакция, Изм. № 2).

1а.2. Предельно-допустимая концентрация (ПДК) свинца и его соединений в воздухе рабочей зоны по ГОСТ 12.1.005 максимально разовая — 0,01 мг/м³, среднесменная — 0,007 мг/м³.

1а.3. Контроль за содержанием свинцового концентрата в воздухе рабочей зоны производственных помещений — по ГОСТ 12.1.007.

Анализ проб воздуха следует проводить в соответствии с ГОСТ 12.1.016 и по правилам определения вредных веществ в воздухе рабочей зоны, утвержденным Минздравом.

1а.2, 1а.3. (Введены дополнительно, Изм. № 1).

1а.3.1. Пробы свинцового концентрата, поступившие на анализ, необходимо хранить в пакетах из плотной бумаги, а реактивы применяемые для анализа, — в шкафах или боксах, оборудованных вентиляцией.

1а.3.2. Подготовка проб к анализу (растворение, сплавление, обжиг, купелирование, экстра-

кция) должна проводиться в шкафах, оборудованных местным отсасывающим устройством.

1а.3.3. Помещения лаборатории должны иметь приточно-вытяжную вентиляцию — по ГОСТ 12.4.021.

1а.3.4. Помещения лаборатории и их освещение должны соответствовать СН 245—71 и СНиП П-4—79.

1а.3.5. Лаборатория должна обеспечиваться специальными бытовыми помещениями и устройствами согласно СНиП П-92—76 по IIIа группе производственных процессов.

1а.3.1—1а.3.5. (Введены дополнительно, Изм. № 2).

Издание официальное

Перепечатка воспрещена

1а.4. При использовании сжатых, сжиженных и растворенных газов в процессе анализа требуется соблюдать правила устройства и безопасной эксплуатации сосудов, работающих под давлением, утвержденные Госгортехнадзором.

1а.5. Для предотвращения попадания в воздух рабочей зоны вредных для организма веществ, выделяющихся при распылении анализируемых растворов в пламя, горелку пламенного эмиссионного и атомно-абсорбционного спектрофотометров следует помещать во внутрь вытяжного устрой-

ства, оборудованного защитным экраном.

1а.б. Все электроустановки и электроаппаратура, применяемые при анализе свинцовых концентратов, должны соответствовать требованиям ГОСТ 12.1.019, ГОСТ 12.2.007.0, а также правилам технической эксплуатации и правилам техники безопасности при их эксплуатации, утвержденным Госэнергонадзором.

Элементы оборудования и установок должны быть окращены в сигнальные цвета и оборудованы знаками безопасности в соответствии с ГОСТ 12.4.026.

- 1а.7. Обезвреживание и удаление отходов, образующихся в результате проведения анализа свинцовых концентратов, необходимо проводить в месте, специально отведенном для этих целей, в соответствии с правилами по обезвреживанию и удалению токсичных отходов, утвержденными санитарно-эпидемиологической службой Минэдрава.
- 1а.8. Пожарная безопасность лабораторных помещений должна обеспечиваться в соответствии с требованиями ГОСТ 12.1.004. Помещения химической лаборатории должны быть оснащены средствами огнетушения в соответствии с ГОСТ 12.4.009.

1а.4—1а.8. (Введены дополнительно, Изм. № 1).

1а.9. Работающие со свинцовым концентратом должны пользоваться средствами индивидуальной защиты: специальной одеждой по ГОСТ 12.4.103, респираторами по ГОСТ 12.4.034, головными уборами, полихлорвиниловыми рукавицами или перчатками и защитными очками по ГОСТ 12.4.013* согласно типовым отраслевым нормам бесплатной выдачи спецодежды, спецобуви и предохранительных приспособлений рабочим и служащим.

(Измененная редакция, Изм. № 2).

ФОТОМЕТРИЧЕСКИЙ МЕТОД (ПРИ МАССОВОЙ ДОЛЕ МЫШЬЯКА • от 0,01 до 0,2 %)

Метод основан на образовании желтого мышъяково-молибденового комплекса с последующим восстановлением его сернокислым гидразином в слабокислом растворе до молибденовой сини и фотометрировании окрашенного раствора.

От сопутствующих элементов мышьяк (III) отделяют экстракцией четыреххлористым углеродом из раствора соляной кислоты 9 моль/дм³, содержащего 0,1 М йодида калия.

2.1. Аппаратура, реактивы и растворы

2.1.1. Для проведения анализа применяют:

спектрофотометр или фотоэлектроколориметр;

кислоту азотную по ГОСТ 4461:

кислоту серную по ГОСТ 4204, разбавленную 1:1 и 1:5;

кислоту соляную по ГОСТ 3118 плотностью 1,19 г/см³, очищенную от мышьяка следующим образом: в 500 см³ соляной кислоты растворяют 10 г йодистого калия. Раствор переносят в делительную воронку вместимостью 500 см³, прибавляют 25 см³ четырежилористого углерода и встряхивают в течение 2 мин. Дают отстояться и сливают органический слой. Водный слой еще раз экстрагируют 25 см³ четырежилористого углерода. Органический слой отбрасывают;

кислоту соляную, раствор с (HCl) = 9 моль/дм3. Готовят из очищенной от мышъяка соляной

кислоты разбавлением водой 3:1;

гидразин сернокислый по ГОСТ 5841, раствор 1,5 г/дм3;

аммоний молибденовокислый по ГОСТ 3765, раствор 10 г/дм³ в растворе серной кислоты, разбавленной 1 : 5;

молибдат-гидразиновый реактив: 20 см³ раствора молибденовокислого аммония разбавляют до 95 см³ водой, приливают 2,5 см³ сернокислого гидразина и перемешивают. Готовят в день употребления;

натрия гидрат окиси по ГОСТ 4328, раствор 100 г/дм3;

На территории Российской Федерации действует ГОСТ Р 12.4.013—97.

калий марганцовокислый по ГОСТ 20490, раствор 1 г/дм³;

калий йодистый по ГОСТ 4232;

титан треххлористый по ТУ 6-09-01-756;

углерод четыреххлористый по ГОСТ 20288;

фенолфталеин по ТУ 6-09-5360, спиртовой раствор 1 г/дм3;

ангидрид мышьяковистый по ГОСТ 1973;

стандартные растворы мышьяка:

раствор А. 0,1320 г мышьяковистого ангидрида растворяют при нагревании в 5—10 см³ раствора едкого натра, переводят в мерную колбу вместимостью 1000 см³, нейтрализуют по фенолфталенну раствором серной кислоты, разбавленной 1:5, и доливают до метки водой.

1 см³ раствора А содержит 0,1 мг мышьяка;

раствор Б. 10 см³ раствора А помещают в мерную колбу вместимостью 100 см³ и доводят до метки водой.

1 см3 раствора Б содержит 10 мкг мышьяка.

2.2. Проведение анализа

2.2.1. Навеску свинцового концентрата массой 0,1000—1,0000 г растворяют в 20 см³ азотной кислоты. Прибавляют 20 см³ серной кислоты, разбавленной 1:1, и осторожно выпаривают до паров серной кислоты. Стенки колбы обмывают водой и выпаривание до паров серной кислоты повторяют. Раствор переводят в мерную колбу вместимостью 100 см³, доводят до метки водой. Из осветленной части раствора берут аликвотную часть, содержащую 10—20 мкг мышьяка, и переносят в делительную воронку. Прибавляют по каплям раствор треххлористого титана до сиреневого цвета и в избыток 0,2 см³. Прибавляют трехкратный объем соляной кислоты, 20 см³ четыреххлористого углерода и встряхивают в течение 2 мин. Дают отстояться и сливают органический слой в другую делительную воронку. Экстракцию с 20 см³ четыреххлористого углерода повторяют и присоединяют органический слой к первому. Объединенные экстракты промывают 10 см³ раствора соляной кислоты 9 моль/дм³, встряхивая 15—20 с. Промытый экстракт сливают в другую делительную воронку, где встряхивают с 10 см³ воды. При этом мышьяк переходит в водный слой. Реэкстракцию мышьяка с 10 см³ воды повторяют. Объединенные реэкстракты сливают в коническую колбу вместимостью 100 см³.

Добавляют по каплям раствор марганцовокислого калия до розовой окраски.

Через 5 мин прибавляют 20 см³ молибдат-гидразинового реактива и кипятят 5—10 мин в закрытой колбе. Раствор охлаждают, переводят в мерную колбу вместимостью 50 см³ и доводят до метки молибдат-гидразиновым реактивом.

Измеряют оптическую плотность раствора на фотоэлектроколориметре или на спектрофотометре в области длин волн 660—680 нм в кюветах с оптимальной толщиной поглощающего свет слоя раствора.

Раствором сравнения при измерении оптической плотности служит вода.

Одновременно в тех же условиях проводят контрольный опыт с реактивами для внесения в результат анализа соответствующей поправки.

Массовую долю мышьяка находят по градуировочному графику.

(Измененная редакция, Изм. № 2).

2.2.2. Для построения градуировочного графика в конические колбы вместимостью по 100 см³ помещают 0; 0,5; 1,0; 2,0; 3,0; 4,0 и 5,0 см³ стандартного раствора Б, что соответствует 0, 5, 10, 20, 30, 40 и 50 мкг мышьяка, разбавляют до 20 см³ водой, прибавляют по каплям раствор марганцовокислого калия до розовой окраски. Через 5 мин прибавляют 20 см³ молибдат-гидразинового реактива и далее анализ продолжают, как указано в п. 2.2.1.

По полученным значениям оптических плотностей растворов и соответствующим им содержаниям мышьяка строят градуировочный график.

2.3. Обработка результатов

2.3.1. Массовую долю мышьяка (Х) в процентах вычисляют по формуле

$$X = \frac{m_1 \cdot V \cdot 100}{V_1 \cdot m \cdot 10^6} ,$$

где m₁ — количество мышъяка, найденное по градуировочному графику, мкг;

V — объем мерной колбы, см³;

 V_1 — объем аликвотной части раствора, см³;

т — масса навески концентрата, г.

2.3.2. Допускаемое расхождение между результатами параллельных определений и допускаемое расхождение между результатами анализа при доверительной вероятности P=0,95 не должно превышать величины, указанной в табл. 1.

Таблица 1

9

Массовая доля мышьяка	Допускаемое расхождение между параллельными определениями	Допускаемое расхождение между результатами анализа	
От 0,01 до 0,03	0,005	0,008	
CB, 0,03 * 0,06	0,01	0,015	
> 0,06 > 0,1	0,02	0,025	
 0,1 * 0,3 	0,03	0,035	

(Измененная редакция, Изм. № 2).

3. ТИТРИМЕТРИЧЕСКИЙ МЕТОД (ПРИ МАССОВОЙ ДОЛЕ МЫШЬЯКА свыше 0,2 %)

Метод основан на титровании трехвалентного мышьяка бромноватокислым калием после отделения его от мешающих определению элементов дистилляцией в виде трихлорида в присутствии сернокислого гидразина и бромистого калия.

3.1. Аппаратура, реактивы и растворы

3.1.1. Для проведения анализа применяют:

установку для отгонки треххлористого мышьяка (см. чертеж);

потенциометр с платиновым индикаторным электродом (в качестве электрода сравнения применяют каломельный электрод);

кислоту азотную по ГОСТ 4461; **

кислоту серную по ГОСТ 4204, разбавленную 1:1;

кислоту соляную по ГОСТ 3118 и разбавленную 1 : 9;

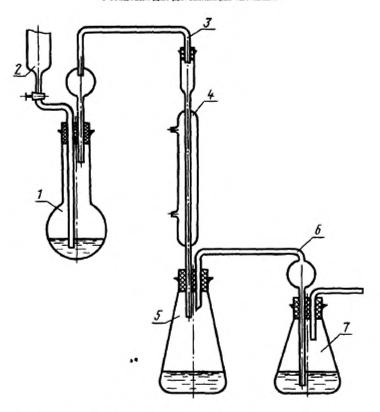
гидразин сернокислый по ГОСТ 5841;

калий бромистый по ГОСТ 4160;

калий бромноватокислый по ГОСТ 4457, раствор с $\left(\frac{1}{6}\,\mathrm{KBrO_3}\right) = 0,02\,$ моль/дм³;

готовят следующим образом: 0,5567 г и дважды перекристаллизованной и высущенной при 180 °C соли растворяют в воде и переливают раствор в мерную колбу вместимостью 1000 см³. Раствор разбавляют до метки водой и перемешивают;

метиловый оранжевый (пара-диметиламиноазобензолсульфокислый натрий) 0,1 %-ный раствор.


(Измененная редакция, Изм. № 2).

3.2. Проведение анализа

3.2.1. Навеску свинцового концентрата массой 0,5000—1,0000 г, в зависимости от содержания мышьяка, помещают в коническую колбу вместимостью 250 см³, прибавляют 15—20 см³ азотной кислоты, нагревают в течение 5—10 мин, затем приливают 20 см³ разбавленной 1:1 серной кислоты и вновь нагревают до появления паров серной кислоты. Охлаждают, обмывают стенки колбы водой и повторяют нагревание до появления паров серной кислоты. После охлаждения раствора приливают 40—50 см³ воды и кипятят в течение 3—5 мин. Раствор слегка охлаждают переносят в перегонную колбу вместимостью 500 см³, пользуясь при этом разбавленной 1:9 соляной кислотой. К раствору, объем которого равен 140—150 см³, прибавляют 1—2 г гидразина, 1 г бромистого калия, 150 см³ концентрированной соляной кислоты и закрывают колбу пробкой с насадкой.

В приемник и контрольный приемник наливают 50—60 см³ воды. Раствор в перегонной колбе нагревают до кипения. Дистилляцию трихлорида мышьяка продолжают до тех пор, пока объем раствора в приемнике не достигнет 200 см³. Дистиллят переводят в коническую колбу вместимостью 500 см³, нагревают до 60—70 °C, добавляют 2—3 капли раствора метилового оранжевого и титруют мышьяк раствором бромноватокислого калия до исчезновения розовой окраски. К концу титрование ведут медленно и при энергичном перемешивании.

Установка для дистилляции мышьяка

I— перегонная колба вместимостью 500 см³; 2— капельная воронка; 3— насадка с брызгоуловителем; 4— водяной колодильник; 5— приемник (коническая колба вместимостью 250 см²); 6— стеклянная трубка с группевидным расширением; 7— контрольный пряемник (коническая колба вместимостью 250 см²)

Мышьяк в растворе может быть определен потенциометрическим методом. Нагревание в этом случае не требуется.

(Измененная редакция, Изм. № 2).

3.3. Обработка результатов

3.3.1. Массовую долю мышьяка (X_I) в процентах вычисляют по формуле

$$X_1 = \frac{TV \cdot 100}{m} ,$$

где T — титр 0,02 моль/дм³ раствора бромноватокислого калия по мышьяку, равный 0,000749 г/см³:

V— объем раствора бромноватокислого калия, израсходованный на титрование, см³;

т — масса навески концентрата, г.

3.3.2. Допускаемые расхождения между результатами параллельных определений и допускаемое расхождение между результатами анализа при доверительной вероятности P=0.95 не должно превышать величины, указанной в табл. 2.

Таблица 2

Массовая доля мышьяка	Допускаемое расхождение между параллельными определениями	Допускаемое расхождение между результатами анализа	
От 0,1 до 0,3	0,03	0,05	
CB. 0,3 → 0,7	0,05	0,1	
* 0,7 * 2	0,15	0,2	
* 2 * 5	0,2	0,25	

(Измененная редакция, Изм. № 2).

Albert Committee of the

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТАН И ВНЕСЕН Министерством цветной металлургии СССР

РАЗРАБОТЧИКИ

М.Г. Саюн, К.Ф. Гладышева, В.А. Колесникова

- УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 23.08.78 № 2310
- B3AMEH FOCT 14047.5—71
- 4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер пункта, подпункта	Обозначение НТД, на который дана ссылка	Номер пункта, подпункта
ГОСТ 12.1.004—91	1a.8	ГОСТ 3765—78	2.1.1
ГОСТ 12.1.005-88	1a.1, 1a.2	FOCT 4160-74	3.1.1
ГОСТ 12.1.007-76	1a.3	FOCT 4204-77	2.1.1, 3.1.1
ГОСТ 12.1.016—79	1a.3	ГОСТ 4232—74	2.1.1
ГОСТ 12.1.019-79	1a.6	FOCT 4328-77	2.1.1
FOCT 12.2.007.075	1a.6	FOCT 4457—74	3.1.1
ΓΟCT 12.4.009-83	1a.8	ГОСТ 4461—77	2.1.1, 3.1.1
ГОСТ 12.4.013—85	1a.9	TOCT 5841-74	2.1.1, 3.1.1
FOCT 12.4.021-75	1a.3.3	ГОСТ 2028874	2.1.1
ГОСТ 12.4.026-76	1a.6	FOCT 20490-75	2.1.1
ГОСТ 12.4.034—85	1a.9	ГОСТ 27329—87	1.1
ГОСТ 12.4.103-83	1a.9	TY 6-09-5360-87	2.1.1
FOCT 1973-77	2.1.1	ТУ 6-09-01-756-88	2.1.1
FOCT 3118-77	2.1.1, 3.1.1		

- Отраничение срока действия снято по протоколу № 7—95 Межгосударственного Совета по стандартизации, метрологии и сертификации (ИУС 11—95)
- ПЕРЕИЗДАНИЕ (март 1999 г.) с Изменениями № 1, 2, утвержденными в июле 1984 г., июне 1989 г. (ИУС 11—84, 10—89)

Редактор Т.С. Шеко Технический редактор В.Н. Прусакова Корректор М.С. Кабашова Компьютерная верстка С.В. Рябовой

Изд. лиц. № 021007 от 10.08.95. Сдано в набор 07.04.99. Подписано в печать 30.04.99. Усл. печ.л. 0,93. Уч. -изд.л. 0,70. Тираж 133 экз. С 2757. Зак. 373.