СПЛАВЫ МЕДНО-ЦИНКОВЫЕ

МЕТОДЫ СПЕКТРАЛЬНОГО АНАЛИЗА

Издание официальное

межгосударственный стандарт

СПЛАВЫ МЕДНО-ЦИНКОВЫЕ

Метод спектрального анализа по металлическим стандартным образцам с фотографической регистрацией спектра ГОСТ 9716.1—79

Copper-zinc alloys. Method of spectral analysis of metal standard spesimens with photographic registration of spectrum

OKCTY 1709

Дата введения 01.01.81

Настоящий стандарт устанавливает метод спектрального анализа по металлическим стандартным образцам (СО) с фотографической регистрацией спектра и распространяется на латуни марок ЛС59—1, Л63, ЛО70—1, Л96, Л68, Л60, Л70, Л80, Л85, Л90, ЛО60—1, ЛО62—1, ЛО90—1, ЛС 58—2, ЛС 63—3, ЛС 74—3, ЛС 64—2, ЛС 60—1, ЛА 77—2, ЛАМш 77—2—0,05, ЛАЖ 60—1—1, ЛАН 59—3—2, ЛМцА 57—3—1, ЛМц 58—2, ЛАНКМц 75—2—2,5—0,5—0,5 по ГОСТ 15527.

Метод основан на возбуждении спектра дуговым разрядом переменного тока с последующей регистрацией его на фотопластинке с помощью спектрографа. Массовую долю определяемых элементов находят по градуировочному графику с помощью измеренных значений разности оптических плотностей аналитических линий и «внутренних стандартов» в спектрограммах сплава.

Метод позволяет определить в латунях железо, свинец, никель, алюминий, олово, кремний, мышьяк, висмут, сурьму и фосфор в интервале массовых долей, указанных в табл. 1.

Таблица 1

Марка сплава	Определяемый элемент	Массовая доля, %
IC 59−1, ЛС 60−1,	Железо	0,010,8
С 63-3, ЛС 64-2,	Свинец	0,03-3,2
С 74—3, ЛС 58—2	Никель	0,05-1,1
	Олово	0,06-1,6
	Алюминий	0,025-0,2
	Кремний	0,03-0,6
	Сурьма	0,003-0,03
	Висмут	0,002-0,008
	Фосфор	0,0060,03
60, Л63, Л68, Л70,	Железо	0,01-0,3
180, Л85, Л90, Л96,	Свинен	0,008-0,15
AMm 77-2-0,05	Никель	0,050,6
	Олово	0,005-0,20
	Мышыяк	0,003-0,06
	Висмут	0,001-0,006
	Сурыма	0,002-0,012
	Фосфор	0,009-0,02
	Кремний	0,01-0,20
	Алюминий	0,01-2,50

Издание официальное

Перепечатка воспрешена

*

ФИздательство стандартов, 1979
 ИПК Издательство стандартов, 1999
 Переиздание с Изменениями

Марка сплава	Определяемый элемент	Массовая доля, %
ЛО60—1, ЛО62—1, ЛО70—1, ЛО90—1	Железо Свинец Олово Никель Сурьма Висмут	0,01—0,15 0,01—0,1 0,2—1,6 0,09—0,5 0,002—0,015 0,001—0,007
ЛА 77—2	Железо Свинец Никель Сурьма Кремний Алюминий Мярганец Висмут Фосфор	0,013—0,15 0,02—0,09 0,097—1,35 0,0025—0,010 0,004—0,20 1,20—3,00 0,009—1,35 0,001—0,008 0,01—0,003
ЛАНЖ 60—1—1, ЛАН 59—3—2	Железо	0,041,50
ЛМцА 57—3—1	Свинец	
ЛМц 58—2	Сурьма	0,002-0,015
ЛАНКМц 75—2—2,5—0,5—0,5	Висмут Никель Алюминий Кремний Марганец	0,001—0,008 1,38—3,84 0,33—4,10 0,16—0,98 0,095—3,70

Сходимость и воспроизводимость результатов анализа характеризуются величинами допускаемых расхождений, приведенными в табл. 2, для доверительной вероятности P = 0.95.

Таблица 2

		Габлиц
Определяемая примесь	Допускаемые расхождения двух результатов паралиельных определений, %	Допускаемые расхождения двуг результатов анализа, %
Железо	0,0015 + 0,12C	0,0013 + 0,16C
Марганец	0,0011 + 0,17C	0,0015 + 0,23C
Кремний	0,0008 + 0,22C	0,0010 + 0,30C
Свинец	0,0010 + 0,12C	0,0013 + 0,18C
Сурьма	0,0001 + 0,25C	0,0001 + 0.33C
Никель	0,0052 + 0,20C	0,0069 + 0,26C
Олово	0,0025 + 0,15C	0,0033 + 0,20C
Висмут	0,0001 + 0,24C	0,0001 + 0,32C
Алюминий	0,0007 + 0,20C	0,0009 + 0,26C
Мышьяк	0,20C	0,23C
Фосфор	0,30C	0,40C

Примечания:

2. При проверке выполнения установленных нормативов допускаемых расхождений двух результатов анализа за $C = (C_1 + C_2)/2$ принимают среднее арифметическое двух результатов анализа одной и той же пробы, полученных в разное время.

^{1.} При проверке выполнения установленных нормативов допускаемых расхождений двух результатов параллельных определений за $C = (C_1 + C_2)/2$ принимают среднее арифметическое первого и второго результатов параллельных определений данной примеси в одной и той же пробе.

Интервал определяемых массовых долей элементов может быть расширен как в меньшую, так и в большую сторону за счет применения СОП и в зависимости от применяемой аппаратуры и метолик анализа.

(Измененная редакция, Изм. № 1).

1. ОБЩИЕ ТРЕБОВАНИЯ

 Общие требования к методу анализа — по ГОСТ 25086. (Измененная редакция, Изм. № 1).

2. АППАРАТУРА, МАТЕРИАЛЫ И РАСТВОРЫ

Спектрограф для фотографирования ультрафиолетовой области спектра со средней разрешающей способностью типа ИСП-30.

Источник тока — дуга переменного тока (генератор ГЭУ-1 со штативом типа ШТ-16, ДГ-2 со штативом типа ШТ-9 и ИВС-21).

Микрофотометр типа МФ2 или ИФО-460. Спектропроектор ПС-18 или другого типа.

Электроды из меди марки М1 или из угля марки С3 в виде прутков диаметром 6-7 мм, заточенные на полусферу или усеченный конус.

Приспособление для заточки угольных или медных электродов, станок модели КП-35.

Токарный станок для заточки СО и анализируемых проб на плоскость типа ТВ-16. Фотопластинки спектральные типов 1, 2, «Микро», ЭС, УФШ чувствительностью от 0,5 до

Метол (пара-метиламинофенолсульфат).

Гидрохинон (парадиоксибензол) по ГОСТ 19627.

Натрий сернокислый безводный по ГОСТ 195.

Натрий углекислый безводный по ГОСТ 83.

Калий бромистый по ГОСТ 4160.

Натрий серноватистокислый кристаллический (тиосульфат) по ГОСТ 244.

Кислота уксусная по ГОСТ 61.

Вода дистиллированная по ГОСТ 6709.

Проявитель для фотопластинок спектральных типов 1, 2, «Микро» и ЭС готовят смешиванием равных объемов растворов 1 и 2 перед применением.

Раствор 1; готовят следующим образом: 2,5 г метола, 12 г гидрохинона и 100 г сернистокислого натрия растворяют в 500—700 см³ воды и доливают водой до 1 дм³.

Раствор 2; готовят следующим образом: 100 г углекислого натрия и 7 г бромистого калия растворяют в 500-700 см³ воды и доливают водой до 1 дм³.

Допускается применение и других контрастно работающих проявителей.

Проявитель для спектральных фотопластинок типа УФШ; готовят следующим образом: 2,2 г метола, 8,8 г гидрохинона, 96 г сернистокислого натрия, 48 г углекислого натрия и 5 г бромистого калия растворяют в 500-700 см³ воды и доливают водой до 1 дм³.

Фиксажный раствор; готовят следующим образом: 300 г тиосульфата натрия, 25 г сернистокислого натрия и 8 см³ уксусной кислоты растворяют в 1 дм³ дистиллированной воды.

Допускается применение и других фиксажных растворов.

Допускается использование других средств измерений с метрологическими характеристиками и оборудования с техническими характеристиками не хуже, а также реактивов по качеству не ниже вышеуказанных. Средства измерения должны быть аттестованы в соответствии с ГОСТ 8.326.

(Измененная редакция, Изм. № 1).

3. ПОДГОТОВКА К АНАЛИЗУ

 Подготовка проб и СО к анализу должна быть однотипной для каждой серии измерений. Массы пробы и СО не должны отличаться более чем в 2 раза.

Подготовку образца проводят зачисткой одной из его граней на плоскость напильником или

металлорежущим инструментом (станком) без охлаждающей жидкости и смазки.

При фотографировании каждого спектра зачищенная поверхность должна представлять собой плоскую площадку диаметром не менее 10 мм без раковин, царапин, трещин и плаковых включений. Перед фотографированием спектров для снятия загрязнений анализируемые образцы и СО протирают этиловым спиртом.

(Измененная редакция, Изм. № 1).

4. ПРОВЕДЕНИЕ АНАЛИЗА

4.1. Пробу (или СО) зажимают в нижнем зажиме штатива и подводят под угольный или медный электрод таким образом, чтобы расстояние от обыскриваемого участка до края образца было не меньше пятна обыскривания (2—5 мм).

Между концами электродов, раздвинутыми на 1,5—2,5 мм, зажигают дугу переменного тока силой 3—8 А.

Межэлектродный промежуток устанавливают по шаблону или микрометрическим винтом. Длину дуги и положение источника на оптической оси контролируют с помощью проекционной линзы и экрана, установленных вне участка от источника до щели.

Спектры фотографируют с помощью кварцевого спектрографа средней дисперсии типа ИСП-30. Щель спектрографа — 0,015 мм. С целью сокращения времени экспозиции и получения высокой разрешающей способности спектрографа применяют астигматическое освещение щели с полным заполнением объектива коллиматора. Для этого может быть рекомендовано применение однолинзового сферического конденсатора с фокусным расстоянием 75 мм, расположенного на расстоянии 300 мм от щели и 72 мм от источника света.

Допускается также применять любую другую систему освещения, которая обеспечивает равномерную интенсивность линии в фокальной плоскости прибора.

С целью обеспечения нормальной оптической плотности аналитических линий и фона допускается применять фотопластинки различной чувствительности, однако, минимальная измеряемая оптическая плотность фона должна составлять не менее 0,25.

Время экспозиции и расстояние от источника света до щели спектрографа подбирают в зависимости от чувствительности используемых фотопластинок, обеспечивая нормальную плотность фона непрерывного спектра. Увеличение плотности фона за счет вуали, засвечивания и т. п. не допускается.

Время экспозиции должно быть не менее 15 с. Время предварительного обжига составляет 15 с. Для каждого образца (пробы или СО) фотографируют по две спектрограммы.

Обработка фотопластинок.

Проявление фотопластинок в зависимости от их типа проводят в соответствующем проявителе (см. п. 2) при температуре 18—20 °C.

После промывки фотопластинок в проточной воде их фиксируют в фиксажном растворе, промывают в проточной воде и высушивают.

4.1, 4.2. (Измененная редакция, Изм. № 1).

5. ОБРАБОТКА РЕЗУЛЬТАТОВ

5.1. Оптические плотности аналитических линий и «внутренних стандартов» в спектрограммах измеряют с помощью микрофотометра.

Аналитические линии выбирают в зависимости от марки сплава.

Длины волн аналитических линий и «внутренних стандартов» (фона) приведены в табл. 3.

Таблина 3

Определяемый элемент	Длина волны аналигической линии, нм	Место измерения плотности фона	Марка латуни
Никель	282,129	Фон 2	ЛС59—1, ЛО70—1,Л96, ЛА 77—2
Никель	241,614	Фон 2	ЛАН 59-3-2, ЛМЦА 57-3-1, ЛАНКМЦ 75-2-2,5-0,5-0,5
Железо	296,690	Фон 1	Л96, ЛС59—1, ЛО70—1, Л68, ЛС 74—3, ЛС 64—2, ЛО90—1
Железо	259,939	Фон 2	ЛА 77-2, Л63, Л70, Л80, Л90
Железо	259,837	Фон 2	ЛАЖ 60-1-1, ЛАН 59-3-2, ЛМЦА 57-3-1, ЛАНКМЦ 75-2-2,5-0,5-0,5, ЛМЦ 58-2

Продолжение табл. 3

Определяемый элемент	Длина волны аналитической линии, нм	Место измерения плотности фона	Марка латуни	
Железо	238,204	Фон 2	ЛАН 59-3-2, ЛМцА 57-3-1, ЛАНКМц 75-2-2,5-0,5-0,5	
Олово	266,125	Фон 2	ЛС 59—1, Л68	
Олово	281,262	Фон 2	ЛО 70—1	
Олово	283,999	Фон 2	л96, л63	
Мышык	234,984	Фон 3	Л68, ЛАМш 77—2—0,05	
Свинец	287,332	Фон 4	Л63, ЛО70—1, Л68	
Свинец	244,380	Фон 1	ЛС 59—1	
Свинсц	283,307	Фон 5	Л96, ЛА 77—2, ЛАЖ 60—1—1, ЛАН 59—3—2, ЛМЦА 57—3—1, ЛМЦ 58—2, ЛАНКМЦ 75—2—2,5—0,5—0,5	
Алюминий	266,039	Фон 2	ЛС 59—1	
Алюминий	308,215	Фон 2	ЛАН 59—3—2, ЛМцА—58—3—1, ЛАНКМЦ 75—2—2,5—0,5—0,5, Л63	
Кремний	243,516	Фон 1	ЛС 59—1	
Кремний	251,433	Фон 2	ЛА 77—2	
Кремний	283,158	Фон 2	Л63, ЛАН 59—3—2, ЛМцА 57—3—1 ЛАНКМц 75—2—2,5—0,5—0,5	
Висмут	306,772	Фон 1	Л60, Л63, Л68, Л70, Л80, Л85, Л90, Л96, Л060—1, ЛО62—1, ЛО70—1, ЛО90—1, ЛА 77—2, ЛАЖ 60—1—1, ЛАН 59—3—2	
Фосфор	255,32	Фон 2	л63, л90	
Сурьма	252,85 259,81	Фон 2 Фон 2	Л63, Л68, Л70, Л80, Л90 ЛС 59—1, ЛС 64—2, ЛС 74—3, ЛО90—1	

П р и м е ч а н и е. «Фон 1» означает минимальное значение оптической плотности фона, измеряемое рядом с аналитической линией со стороны более длинных волн.

«Фон 2» означает минимальное значение оптической плотности фона, измеряемое рядом с аналитической линией со стороны более коротких волн;

«Фон 3» означает оптическую плотность слабой молекулярной линии 235,08 нм, которая при расчетах принимается за плотность фона;

«Фон 4» означает минимальное значение оптической плотности фона, измеряемое между линиями меди 288,29 и 288, 53 нм;

«Фон 5» означает максимальное значение оптической плотности фона, измеряемое на расстоянии 0,13 мм от линии свинда 283,307 нм в сторону длинных волн.

Допускается применение других аналитических линий, линий внутренних стандартов, источников возбуждения спектров при условии получения метрологических характеристик не куже установленных настоящим стандартом.

Основным методом рекомендуемым для выполнения анализа, является метод «трех эталонов».

C. 6 FOCT 9716.1-79

Допускается применение других методов построения графика, например, метода твердого градуировочного графика, метода контрольного эталона и др.

На спектрограмме с помощью микрофотометра измеряют почернение аналитических линий определяемых элементов $S_{a+\varphi}$ и фона S_{φ} . Вычисляют значение $\Delta S = S_{a+\varphi} - S_{\varphi}$.

Находят среднее арифметическое результатов, полученное по двум спектрограммам каждого стандартного образца (Δ \bar{S}), пересчитывают в $\lg \frac{I_3}{I_{\Phi}}$ по таблице приложения и строят градуировочный

график в координатах $\lg \frac{I_n}{I_{\Phi}} - \lg C$, где C — массовая доля примеси в стандартных образцах, %. По градуировочным графикам находят содержание примесей для каждой из двух спектрограмм, полученным для одной пробы.

За окончательный результат анализа принимают среднее арифметическое результатов двух параллельных определений, полученных на одной фотопластинке.

Если расхождение между параллельными определениями превышает величину допускаемого расхождения, приведенного в табл. 2, фотографирование спектров повторяют на второй фотопластинке. В этом случае за окончательный результат анализа принимают среднее арифметическое четырех параллельных определений.

Контроль точности результатов анализа проводят по ГОСТ 25086 с использованием государственных, отраслевых стандартных образцов или стандартных образцов предприятия.

(Измененная редакция, Изм. № 1).

ИНФОРМАЦИОННЫЕ ДАННЫЕ

 РАЗРАБОТАН И ВНЕСЕН Министерством цветной металлургии СССР РАЗРАБОТЧИКИ

А.М. Рытиков, М.Б. Таубкин, А.А. Немодрук, М.П Бурмистров, И.А. Воробьева

- УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 26.12.79 № 5045
- 3. B3AMEH FOCT 9716.1-75
- 4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссытка	Номер пункта
FOCT 8.326—89 FOCT 61—75 FOCT 83—79 FOCT 195—77 FOCT 244—76 FOCT 4160—74 FOCT 6709—72 FOCT 15527—70 FOCT 19627—74 FOCT 25086—87	Разд. 2 Разд. 2 Разд. 2 Разд. 2 Разд. 2 Разд. 2 Разд. 2 Вводная часть Разд. 2

- Ограничение срока действия снято по протоколу №5—94 Межгосударственного Совета по стандартизации, метрологии и сертификации (ИУС 11—12—94)
- 6. ПЕРЕИЗДАНИЕ (октябрь 1998 г.) с Изменением № 1, утвержденным в июле 1990 г. (ИУС 11—90)