

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

РЕАКТИВЫ

БАРИЙ ФТОРИСТЫЙ

ТЕХНИЧЕСКИЕ УСЛОВИЯ

ΓΟCT 7168-80

Издание официальное

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

Реактивы

БАРИЙ ФТОРИСТЫЙ

Технические условия

ΓΟCT 7168-80

Reagents. Barium fluoride. Specifications

ОКП 26 2124 0490 06

Дата введения 01.01.81

Настоящий стандарт распространяется на фтористый барий, который представляет собой белый порошок; мало растворим в воде, растворяется в смеси растворов соляной или азотной кислот с борной кислотой.

Формула: ВаБ,.

Молекулярная масса (по международным атомным массам 1971 г.) — 175,33.

(Измененная редакция, Изм. № 1).

1. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

- Фтористый барий должен быть изготовлен в соответствии с требованиями настоящего стандарта по технологическому регламенту, утвержденному в установленном порядке.
- По химическим показателям фтористый барий должен соответствовать нормам, указанным в табл. 1.

Таблина 1

	Норма			
Наименование показателя	Чистый для анализа (ч.д.а.) ОКП 26 2124 0492 04	Чистый (ч.) ОКП 26 2124 0491 05		
 Массовая доля фтористого бария (ВаF₂), %, не менее 	99,5	99,0		
Массовая доля потерь при прокаливании, %, не более	0,2	0,3		
3. Массовая доля хлоридов (СІ), %, не более	0,005	0,005		
4. Массовая доля сульфатов (SO ₄), %, не более	0,015	0,030		
5. Массовая доля железа (Fe), %, не более	0,002	0,005		
6. Массовая доля кремния (Si), %, не более	0,01	0,02		
 Массовая доля тяжелых металлов (Pb+Cu+Mn),%, не более 	0,001	0,003		

(Измененная редакция, Изм. № 1).

Издание официальное

Перепечатка воспрещена

×

© Издательство стандартов, 1980 © ИПК Издательство стандартов, 1998 Переиздание с Изменениями

2. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ

- 2.1. Фтористый барий по степени воздействия на организм человека относится к веществам 2-го класса опасности (ГОСТ 12.1.007). Предельно допустимая концентрация его в воздухе рабочей зоны 0,1 мг/м³. При увеличении концентрации может вызывать острые и хронические отравления с поражением жизненно важных органов и систем.
- 2.2. Определение предельно допустимой концентрации фтористого бария в воздухе основано на поглощении фтористого водорода раствором ализаринкомплексоната лантана с последующим измерением оптической плотности образовавшегося тройного комплексного соединения синего пвета.
- 2.3. Фтористый барий под действием кислот разлагается с выделением фтористого водорода. Предельно допустимая концентрация его в воздухе рабочей зоны 0.05 мг/см³.
- 2.4. Помещения, в которых проводятся работы с препаратом, должны быть оборудованы общей приточно-вытяжной вентиляцией. Анализ препарата следует проводить в вытяжном шкафу лаборатории.

Разд. 2. (Измененная редакция, Изм. № 1).

3. ПРАВИЛА ПРИЕМКИ

Правила приемки — по ГОСТ 3885.

4. МЕТОДЫ АНАЛИЗА

Общие указания по проведению анализа — по ГОСТ 27025.

При выполнении операций взвешивания используют лабораторные весы 2-го класса точности по ГОСТ 24104 с наибольшим пределом взвешивания 200 г и 4-го класса точности с наибольшим пределом взвешивания 500 г.

Допускается применение импортной лабораторной посуды и аппаратуры по классу точности и реактивов по качеству не ниже отечественных.

(Измененная редакция, Изм. № 1).

- 4.2. Пробы отбирают по ГОСТ 3885. Масса средней пробы должна быть не менее 50 г.
- Определение массовой доли фтористого бария проводят по ГОСТ 10398.

При этом около 0,2000 г препарата, предварительно растертого в агатовой ступке, помещают в коническую колбу вместимостью 250 см³, прибавляют 3 см³ раствора борной кислоты, 1 см³ раствора соляной кислоты с массовой долей 25 %, смесь нагревают и перемешивают до полного растворения препарата. Объем раствора доводят водой до 85 см³, прибавляют из бюретки (вместимостью 25 см³ с ценой деления 0,1 (0,05) см³) 20 см³ раствора ди-Na-ЭДТА концентрации 0,05 моль/дм³, 15 см³ раствора гидроокиси калия концентрации 1 моль/дм³ (1 н.), приготовленного на воде, не содержащей углекислоты (ГОСТ 4517) и около 0,1 г индикаторной смеси метилтимолового синего. Раствор после прибавления каждого реактива перемешивают и дотитровывают раствором ди-Na-ЭДТА до перехода его синей окраски в фиолетово-серую.

Масса фтористого бария, соответствующая 1 см³ раствора ди-Na-ЭДТА концентрации точно

0,05 моль/дм³ (0,05 M), — 0,008767 г.

Допускается проводить титрование в присутствии индикаторной смеси флуорексона.

4.4. Определение массовой доли потерь при прокаливании

Около 1,0000 г препарата взвешивают в платиновом тигле (ГОСТ 6563), предварительно прокаленном до постоянной массы и взвешенном с той же точностью, и прокаливают в муфельной печи при 600—700 °С до постоянной массы.

Препарат считают соответствующим требованиям настоящего стандарта, если масса потерь при прокаливании не будет превышать:

для препарата чистый для анализа - 2 мг,

для препарата чистый — 3 мг.

4.5. Определение массовой доли хлоридов проводят по ГОСТ 10671.7.

При этом 0,200 г препарата, тщательно растертого в агатовой ступке, помещают в коническую колбу вместимостью 50 см³, растворяют при слабом нагревании в 5 см³ раствора борной кислоты (ГОСТ 9656) с массовой долей 3 % и 2 см³ раствора азотной кислоты с массовой долей 25 %. После охлаждения доводят объем раствора водой до 30 см³ и, если раствор мутный, его фильтруют через обеззоленный фильтр «синяя лента», тщательно промытый горячим раствором азотной

кислоты с массовой долей 1 %. Далее определение проводят фототурбидиметрическим (в объеме 50 см³) или визуально-нефелометрическим (в объеме 40 см³) методом.

В контрольный раствор прибавляют 5 см3 раствора борной кислоты.

При фототурбидиметрическом определении допускается проводить измерение оптической плотности растворов при длине волны (440 ± 10) мм.

Препарат считают соответствующим требованиям настоящего стандарта, если масса хлоридов не будет превышать:

для препарата чистый для анализа — 0,01 мг,

для препарата чистый — 0,01 мг.

При разногласиях в оценке массовой доли хлоридов анализ проводят фототурбидиметрическим методом.

Определение массовой доли сульфатов проводят по ГОСТ 10671.5.

При этом 0,200 г препарата, тщательно растертого в агатовой ступке, помещают в коническую колбу вместимостью 50—100 см³, растворяют при слабом нагревании и перемешивании в 10 см³ раствора борной кислоты (ГОСТ 9656—75) с массовой долей 3 % и 2 см³ раствора соляной кислоты. Раствор охлаждают, доводят объем его водой до 25 см³ и далее определение проводят фототурби-диметрическим или визуально-нефелометрическим (способ 1) методом, не прибавляя раствор соляной кислоты.

Контрольный раствор содержит все те же реактивы, что и анализируемый.

Препарат считают соответствующим требованиям настоящего стандарта, если масса сульфатов не будет превышать:

для препарата чистый для анализа — 0,03 мг,

для препарата чистый — 0,06 мг.

При разногласиях в оценке массовой доли сульфатов анализ проводят фототурбидиметрическим методом.

4.3-4.6. (Измененная редакция, Изм. № 1).

 4.7. Определение массовой доли железа, кремния, свинца, меди и марганца

4.7.1. Аппаратура, посуда, реактивы и растворы

Спектрограф кварцевый типа ИСП-28 или ИСП-30 с трехлинзовой системой освещения щели и трехступенчатым ослабителем. Допускается использование других приборов с аналогичными метрологическими характеристиками.

Генератор дуги переменного тока ДГ-2, ИВС-28 или аналогичного типа.

Спектропроектор типа СПП-2 или ПС-18.

Микрофотометр МФ-4, ИФО-451 или аналогичного типа.

Прибор ИС для измельчения и перемешивания веществ с комплектом контейнеров и шариков из органического стекла диаметром 10 мм.

Ступка и пестик из органического стекла.

Бюксы из фторопласта или полиэтилена.

Фотопластинки спектральные типа СП-1 чувствительностью 3-6 отн. ед.

Угли графитированные для спектрального анализа марки ос. ч. 7—3 (электроды угольные) диаметром 6 мм; верхний электрод заточен на конус, нижний электрод — с кратером диаметром 5 мм и глубиной 4 мм.

Железо (III) окись, ос. ч. 2-4.

Кремний двуокись, ос. ч. 12-4.

Марганец (III) окись, ос. ч. 11-2.

Меди (II) окись по ГОСТ 16539.

Свинца (II) окись по НД.

Барий фтористый, не содержащий примеси определяемых элементов или с минимальным их содержанием, которое определяют методом добавок в условиях данной методики и учитывают при построении градуировочных графиков.

Аммоний хлористый по ГОСТ 3773.

Вода дистиллированная по ГОСТ 6709.

Гидрохинон (парадиоксибензол) по ГОСТ 19627.

Калий бромистый по ГОСТ 4160.

Метол (4-метиламинофенол сульфат) по ГОСТ 25664.

Натрий сульфит 7-водный.

Натрий серноватистокислый (натрия тиосульфат) 5-водный по ГОСТ 27068.

Натрий углекислый по ГОСТ 83 или натрий углекислый 10-водный по ГОСТ 84.

Проявитель метолгидрохиноновый; готовят следующим образом:

раствор A-2 г метола, 10 г гидрохинона и 104 г 7-водного сульфита натрия растворяют в воде, доводят объем раствора водой до 1 дм 3 , перемешивают и, если раствор мутный, его фильтруют;

раствор Б — 16 г углекислого натрия (или 40 г 10-водного углекислого натрия) и 2 г бромистого калия растворяют в воде, доводят объем раствора водой до 1 дм³, перемешивают и, если раствор мутный, его фильтруют. Затем растворы А и Б смешивают в равных объемах.

Фиксаж быстродействующий; готовят следующим образом:

500 г 5-водного серноватистокислого натрия и 100 г хлористого аммония растворяют в воде, доводят объем раствора водой до 2 дм³, перемешивают и, если раствор мутный, его фильтруют.

(Измененная редакция, Изм. № 1).

- 4.7.2. Подготовка к анализу
- 4.7.2.1. Приготовление анализируемой пробы
- 2,00 г препарата измельчают на приборе ИС в контейнере с пятью шариками в течение 10 мин.

4.7.2.2. Приготовление образцов для построения градуировочных графиков

Предварительно готовят образец А с массовыми долями железа 0,5 %, кремния 1,5 %, свинца, меди и марганца по 0,15 %. Для этого 0,0358 г окиси железа (III), 0,1605 г двуокиси кремния, 0,0080 г окиси свинца (II), 0,0094 г окиси меди (II), 0,0107 г окиси марганца (III) и 4,776 г фтористого бария помещают в ступку и перемешивают следующим образом: сначала в ступке в течение 15 мин перетирают окислы и 1 г фтористого бария, затем смесь и остальной фтористый барий помещают в контейнер с пятью шариками и перемешивают на приборе ИС в течение 20 мин.

Образцы 1, 2 и 3 с убывающим содержанием примесей готовят разбавлением образцов A и 1 фтористым барием в соответствии с табл. 2.

Таблица 2

Номер образца	Массовая доля примеси, %				Масса раз- бавляемого	Macca	Время	
	Fe	Si	Pb	Cu	Mn	образца, г ВаГ2, г	перемеши- вания, мин	
1	0,01	0,03	0,003	0,003	0,003	0,1000 образца А	4,900	25
2	0,0033	0,01	0,001	0,001	0,001	1,000 образца 1	2,000	15
3	100,0	0,003	0,0003	0,0003	0,0003	0,3000 образца 1	2,700	15

Перемешивание образцов осуществляется на приборе ИС в контейнерах с пятью шариками. Готовые образцы хранят в бюксах.

4.7.2.3. Условия фотометрирования

Анализ проводят в дуге переменного тока при условиях, указанных ниже.

Сила тока, A — 10,0.

Ширина щели спектрографа, мм — 0,02.

Расстояние между электродами, мм - 2,0.

Время экспозиции - 20 с.

4.7.2.1—4.7.2.3. (Измененная редакция, Изм. № 1).

4.7.3. Проведение анализа

Перед анализом электроды обжигают в дуге переменного тока при силе тока 12 A в течение 30 с, для контроля на отсутствие в электродах определяемых примесей.

Анализируемую пробу и образцы для построения градуировочных графиков помещают в кратеры нижних электродов, набивая каждым по три электрода, зажигают дугу и снимают спектрограмму. Спектры анализируемой пробы и образцов снимают на одной фотопластинке не менее трех раз. Щель открывают до зажигания дуги.

4.7.4. Обработка результатов

Фотопластинку со снятыми спектрами проявляют, промывают в проточной воде, фиксируют, снова промывают и высушивают на воздухе. Затем проводят фотометрирование аналитических спектральных линий определяемых примесей и соседнего фона, пользуясь логарифмической шкалой, им:

Fe - 302,06; Pb - 283,31;

Mn - 279,48; Cu - 324,75:

Si — 288,16.

Для каждой аналитической пары вычисляют разность почернений Δ S:

$$\Delta S = S_{n+\Phi} - S_{\Phi},$$

где $S_{x+\Phi}$ — почернение линии + фона;

 S_{Φ}^{\cdot} — почернение фона.

По трем значениям разности почернений определяют среднее арифметическое значение $\Delta S'$ для каждого элемента. По значениям $\Delta S'$ образцов для построения градуировочных графиков для каждого определяемого элемента строят градуировочный график, откладывая на оси абсцисс логарифмы концентраций, на оси ординат - средние арифметические значения разности почернений $\Delta S'$.

Массовую долю каждой примеси в препарате находят по графику.

Препарат считают соответствующим требованиям настоящего стандарта, если массовая доля железа, кремния и суммарная массовая доля свинца, марганца и меди не будут превышать допускаемых норм.

За результат анализа принимают среднее арифметическое результатов трех параллельных определений, относительное расхождение между наиболее отличающимися значениями которых не превышает значения допускаемого расхождения, равного 20 %.

(Измененная редакция, Изм. № 1).

5. УПАКОВКА, МАРКИРОВКА, ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

Препарат упаковывают и маркируют в соответствии с ГОСТ 3885.

Вид и тип тары: 2—9, 6—1, 11—1, 11—6. Группа фасовки: III, IV, V, VI, VII.

(Измененная редакция, Изм. № 1).

- 5.2. Препарат перевозят всеми видами транспорта в соответствии с правилами перевозки грузов, действующими на данном виде транспорта.
- 5.3. Препарат хранят в упаковке изготовителя в крытых складских помещениях, вдали от кислот.

6. ГАРАНТИИ ИЗГОТОВИТЕЛЯ

- 6.1. Изготовитель гарантирует соответствие препарата требованиям настоящего стандарта при соблюдении условий транспортирования и хранения.
 - 6.2. Гарантийный срок хранения препарата 3 года со дня изготовления.

(Измененная редакция, Изм. № 1).

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТАН И ВНЕСЕН Министерством химической промышленности СССР

РАЗРАБОТЧИКИ

- Г.В. Грязнов, С.А. Назаров, Т.Г. Манова, И.Л. Ротенберг, В.П. Лопаткина, К.А. Криштул, А.И. Сурнина, З.М. Ривина, Л.В. Кидиярова
- УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета стандартов Совета Министров СССР от 25.02.80 № 880
- 3. B3AMEH FOCT 7168-75
- 4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер пункта, подпункта		
ГОСТ 12.1.007—76	2.1		
ΓOCT 83-79	4.7.1		
ΓΟCT 84—76	4.7.1		
ΓΟCT 3773—72	4.7.1		
ΓOCT 3885—73	3.1; 4.2; 5.1		
ΓΟCT 4160-74	4.7.1		
ΓΟCT 4517—87	4.3		
ΓΟCT 6563—75	4.4		
ΓΟCT 6709—72	4.7.1		
ΓΟCT 9656—75	4.5; 4.6		
ΓΟCT 10398—76	4.3		
ΓΟCT 10671.5—74	4.6		
ΓΟCT 10671.7—74	4.5		
ΓΟCT 16539—79	4.7.1		
ΓΟCT 19627—74	4.7.1		
ΓΟCT 2410488	4.1		
ΓΟCT 2566483	4.7.1		
ГОСТ 27025-86	4.1		
ГОСТ 2706886	4.7.1		

- Ограничение срока действия снято по протоколу № 3—93 Межгосударственного Совета по стандартизации, метрологии и сертификации (ИУС 5-6—93)
- 6. ПЕРЕИЗДАНИЕ (август 1998 г.) с Изменением № 1, утвержденным в ноябре 1987 г. (ИУС 2-88)

Редактор Л.И. Нахимова
Технический редактор В.И. Прусакова
Корректор Р.А. Ментова
Компьютерная перстка А.С. Юфина

Изд. лиц. № 021007 от 10.08.95, Сдано в набор 16.09.98, Подписано в печать 12.10.98, Усл.печ.л. 0.93, Уч.-изд.л. 0.65, Тираж 148 экз. С 1302, Зак. 2027,