

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

ГОСУДАРСТВЕННАЯ СИСТЕМА ОБЕСПЕЧЕНИЯ ЕДИНСТВА ИЗМЕРЕНИЙ

СРЕДСТВА ИЗМЕРЕНИЙ СРЕДНЕЙ МОЩНОСТИ НЕПРЕРЫВНОГО ПАЗЕРНОГО ИЗЛУЧЕНИЯ ОБРАЗЦОВЫЕ

МЕТОДЫ И СРЕДСТВА ПОВЕРКИ

FOCT 8.445-81

Издание официальное

РАЗРАБОТАН Государственным комитетом СССР по стандартам ИСПОЛНИТЕЛИ

Б. М. Степанов, д-р физ.-мат. наук (руководитель темы); В. И. Сачков, канд. техн. наук; А. Ф. Котюк, д-р техн. наук; С. А. Кауфман, канд. техн. наук; Я. Т. Загорский; Т. Н. Игнатович; А. А. Кузнецов

ВНЕСЕН Государственным комитетом СССР по стандартам

Член Госстандарта Л. К. Исаев

УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 23 сентября 1981 г. № 4349

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

Государственная система обеспечения единства измерений

СРЕДСТВА ИЗМЕРЕНИЯ СРЕДНЕЯ МОЩНОСТИ НЕПРЕРЫВНОГО ЛАЗЕРНОГО ИЗЛУЧЕНИЯ ОБРАЗЦОВЫЕ

Методы и средства поверки

State system for ensuring the uniformity of measurements. Standard means measuring laser output average power. Methods and means for verification FOCT 8.445-81

Постановлением Государственного комитета СССР по стандартам от 23 сентября 1981 г. № 4349 срок введения установлен с 01.07 1982 г.

Настоящий стандарт распространяется на образцовые неселективные средства измерений средней мощности непрерывного лазерного излучения от 1·10⁻⁴ до 1 Вт. работающие в днапазоне длин волн 0,3—12,0 мкм на отдельных его участках или фиксированных длинах волн, и образцовые средства измерений средней мощности от 1 до 1·10⁻² Вт на длине волны 10,6 мкм (далее — средства измерений) по ГОСТ 24469—80 и устанавливает методы и средства их первичной и периодической поверок.

1. ОПЕРАЦИИ И СРЕДСТВА ПОВЕРКИ

 При проведении поверки должны быть выполнены операции, указанные ниже:

внешний осмотр (п. 3.1); опробование (п. 3.2);

определение систематической составляющей основной погрешности Θ_1 , обусловленной неточностью градуировки при выпуске в обращение или нестабильностью поверяемого средства измерений за межповерочный интервал на длинах волн 0.5 и 10.6 мкм (п. 3.3):

определение систематической составляющей основной погрешности Θ_2 , обусловленной пространственной неоднородностью приемного элемента поверяемого средства измерений, на длине волны 0.5 мкм (п. 3.4):

исключение систематической составляющей основной погрешности Θ_1 (п. 3.5).

Издание официальное

Перепечатка воспрещена

1.2. При проведении поверки должны быть применены следующие средства:

рабочий эталон единицы средней мощности на длинах воли 0,5 и 10,6 мкм по ГОСТ 8.275—78, состоящий из:

а) аппаратуры измерения средней мощности, в которую входят: первичный измерительный преобразователь, система калибровки по электрической мощности, состоящая из блока калибровки и средств измерений электрической мощности.

измеритель выходных сигналов преобразователя;

б) аппаратуры передачи размера единицы средней мощности, в которую входят:

лазеры.

система стабилизации мощности излучения лазера,

система измерения относительного уровня средней мощности излучения дазера с помощью контрольного средства измере-ний, оптическая система, состоящая из разделяющей и фокусирующей оптики, формирующей пучок лазерного излучения диаметром 2-10 мм;

в) систем регистрации сигналов;

г) систем термостатирования отдельных частей эталона.

Диапазон значений средней мощности, воспроизводимых ра-бочим эталоном, — $1 \cdot 10^{-1}$ — 2 Вт. Относительное среднее квадратическое отклонение результата поверки рабочего эталона не должно превышать $0.4 \cdot 10^{-2}$.

2. УСЛОВИЯ ПОВЕРКИ И ПОДГОТОВКА К НЕЙ

2.1. Поверка должна быть проведена в нормальных условиях применения по ГОСТ 24469-80.

2.2. Перед проведением поверки должны быть выполнены сле-

дующие подготовительные работы:

поверяемое средство измерений и рабочий эталон должны быть заземлены, установлены в рабочее положение, включены в сеть, прогреты при номинальном напряжении и выдержаны в условиях поверки в течение времени, установленного в технической документации, утвержденной в установленном порядке;

регистрирующий прибор поверяемого средства измерений должен быть поверен в соответствии с требованиями технической документации на методы и средства поверки, утвержденной в ус-

тановленном порядке.

2.3. Операции по подготовке к поверке должен проводить пер-сонал, имеющий квалификационную группу не ниже IV в соот-ветствии с «Правилами устройства электроустановок и правила-ми техники безопасности при эксплуатации электроустановок по-

требителей», утвержденными Госэнергонадзором СССР, а также «Санитарными правилами при работе с лазерами», утвержденными Минздравом СССР.

3. ПРОВЕДЕНИЕ ПОВЕРКИ

3.1. Внешний осмотр

Внешний осмотр должен быть проведен перед включением поверяемого средства измерений в сеть при подготовке к поверке согласно разд. 2. При внешнем осмотре должно быть установлено:

наличие маркировки и технической документации, утвержден-

ной в установленном порядке;

отсутствие у поверяемого средства измерений и механического ослабителя, входящего в его комплект, механических повреждений, нарушающих работу средства измерений или мешающих работе поверителя;

возможность считывания показаний с регистрирующего при-

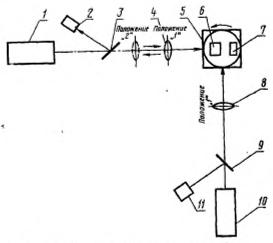
бора;

четкая фиксация во всех положениях и плавность регулирования переключателей и регулировочных элементов.

3.2. Опробование

После прогрева поверяемого средства измерений и рабочего эталона должны быть проведены следующие операции: проверка установки нуля, калибровка измерительных приборов, проверка возможности установки контрольного значения средней мощности на поверяемом средстве измерений.

- 3.3. Определение систематической составляющей основной погрешности Ө₁, обусловленной неточностью градуировки при выпуске в обращение или нестабильностью поверяемого средства измерений за межповерочный интервал, на длинах волн 0,5 и 10,6 мкм
- 3.3.1. Систематическую составляющую основной погрешности О₁ определяют методом прямых измерений. Схема поверки по рабочему эталону на длинах волн 0,5 и 10,6 мкм должна соответствовать приведенной на чертеже. Выходную линзу оптического тракта устанавливают в положение I, обеспечивающее фокусировку пучка излучения лазера рабочего эталона в центр мишени на крышке первичного измерительного преобразователя рабочего эталона. Делительную пластину устанавливают для отклонения части излучения на первичный измерительный преобразователь контрольного средства измерений.


 3.3.2. Измерительный преобразователь поверяемого средства измерений устанавливают на поворотную платформу рабочего эта-

лона.

3.3.3. При поверке на длине волны 0,5 мкм пучок излучения лазера рабочего эталона визуально юстируют в центр мишени на крышке окна первичного измерительного преобразователя рабочего эталона. Крышку снимают. Среднюю мощность излучения лазера рабочего эталона P_0 и P_{∞} измеряют при помощи первичных измерительных преобразователей рабочего эталона и контрольного средства измерений соответственно.

3.3.4. При поверке на длине волны 10,6 мкм юстировку пучка излучения лазера рабочего эталона выполняют визуально при помощи совмещенного с ним юстировочного лазера. Среднюю мощность излучения лазера рабочего эталона измеряют по п. 3.3.3.

3.3.5. Вращением поворотной платформы на место первичного измерительного преобразователя рабочего эталона устанавливают первичный измерительный преобразователь поверяемого средства измерений.

1—блок стабилизированного излучателя (дазера) рабочего эталома на диже волки 0.5 мкм; 2, 11—первичный вимерительный преобразователь контрольного средства вымерений рабочего эталома; 3,5—дедительных пластина; 4,6—выходная ляша отнического трахта; 5—поворотивя платформа рабочего эталома; 6—первичный измерительный преобразователь поверяемого средства измерений; 10—блок стабилижированного взлучателя (дазера) рабочего эталома на дляще волим 10,6 мкм, совмещенного с постировочным лазером.

 З.З.б. На поверяемом средстве измерений устанавливают предел измерений, соответствующий значению средней мощности $P_0 \leqslant 1$ Вт, определенному по п. 3.3.3, и через промежуток времени не менее 5 мин производят N_0 последовательных определений показаний поверяемого средства измерений $P_{\Phi i}$ при отсутствии излучения на входе, где N_0 не менее 5.

3.3.7. Открывают затвор лазера рабочего эталона и на вход первичного измерительного преобразователя подают пучок излучения. Включают цифропечатающее устройство рабочего эта-

лона.

3.3.8. Через промежуток времени, требующийся для установления режима работы, производят N последовательных определений показаний поверяемого средства измерений Pni в течение 2—3 мин, где N не менее 10. Одновременно регистрируют N показаний контрольного средства измерений Pni. После этого затвор лазера рабочего эталона закрывают.

Примечания:

1. Промежуток времени между началом операций по п. 3.3.3 и окончанием

операций по п. 3.3.7 не должен превышать 1 ч.

2. Среднее квадратическое отклонение показаний контрольного средства взмерений $P_{\rm Rf}$ от среднего арифметического из зарегистрированиых N показаний не должно превышать $0.4 \cdot 10^{-2}$.

3.3.9. Действительное значение средней мощности излучения лазера рабочего эталона на входе поверяемого средства измерений P вычисляют по формуле

$$P = \frac{1}{N} \sum_{i=1}^{N} P_{0} \frac{P_{wi}}{P_{E0}}.$$
 (1)

3.3.10. Среднее арифметическое значение показаний поверяемого средства измерений \overline{P}_n , соответствующее действительному значению средней мощности \overline{P} , вычисляют по формуле

$$\widehat{P}_{n} = \frac{1}{N} \sum_{i=1}^{N} P_{ni}.$$
(2)

3.3.11. Показание поверяемого средства измерений P_{π} , соответствующее действительному значению средней мощности P, вычисляют по формуле

$$P_{z} = \overline{P}_{\alpha} - \frac{1}{N_0} \sum_{i=1}^{N} P_{\phi i}. \qquad (3)$$

Форма протокола поверки приведена в обязательном приложении.

3.3.12. Систематическую составляющую основной погрешности Ө, вычисляют по формуле

$$\Theta_1 = \frac{\overline{|P - P_A|}}{P_A}.$$
 (4)

- 3.4. Определение систематической составляющей основной погрешности Ө2, обусловленной пространственной неоднородностью приемного элемента поверяемого средства измерений, на длине волны 0,5 мкм
- 3.4.1. Систематическую составляющую погрешности Θ_2 определяют методом относительных измерений.

Осуществляют расфокусировку лазерного пучка перемещением линзы из положения І в положение 2, обеспечивающее заполнение апертуры поверяемого средства измерений. Измеряют Р , аналотично измерению P_{π} (см. пл. 3.3.7—3.3.11). Форма протокола поверки приведена в обязательном приложе-

жии.

 З.4.2. Систематическую составляющую погрешности Ө2 вычисляют по формуле

$$\Theta_{2} = \frac{2|P_{A}' - P_{A}|}{P_{A}' + P_{A}}.$$
 (5)

- 3.5. Исключение систематической составляющей основной поврешности
- 3.5.1. Поверяемое средство измерений, допускающее или не допускающее переградуировку, считают прошедшим первичную (периодическую) поверку с положительным результатом, если значения систематических составляющих основной погрешности Θ_1 и Θ_2 , определенные по пп. 3.3 и 3.4, соответствуют указанным в таблице.

Систематическая	Значение на д	Необходимость исключения систе-	
состявляющая основной погрешности Ө	0,5 MHM	10,6 MXM	матической состав- ляющей основной погрешности
θ_{t}	Не более 0,4·10 ⁻²	2,0.10-2	Нет
	0,4-10-2-2-10-2	_	Да
θ ₂	1.0.10-2	-	_

3.5.2. При необходимости исключения систематической составляющей основной погрешности Θ_1 на поверяемом средстве измерений устанавливают значение P_{π_0} равное \bar{P} .

4. ОБРАБОТКА РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

4.1. Погрешность поверяемого средства измерений, установленную в результате поверки его по рабочему эталону, выраженную в виде относительного среднего квадратического отклонения S_{z} , если исключение Θ_{1} не проводилось, определяют по формуле

$$S_z = \sqrt{\frac{\theta_1^2 + \theta_2^2}{3} + S_n^2 + S_0^2},$$
 (6)

где Θ_1 , Θ_2 — систематические составляющие основной погрешности поверяемого средства измерений, вычисленные по формулам (4) и (5);

 S₀ — относительное среднее квадратическое отклонение результата поверки рабочего эталона, указанное в

паспорте на эталон;

S_n — погрешность передачи размера единицы рабочим эталоном, выраженная в виде относительного среднего квадратического отклонения, указанная в паспорте на эталон.

4.2. Если исключение Θ_1 проводилось, S_{Ξ} вычисляют по формуле

$$S_{\Sigma} = \sqrt{\frac{\theta_2^2}{3} + S_{\rho}^2 + S_n^2 + S_0^2},$$
 (6a)

где S_p — относительное среднее квадратическое отклонение результата измерений P_n поверяемым средством измерений, равное

$$S_{\rho} = \sqrt{\frac{\sum_{l=1}^{N} (\vec{P}_{n} - P_{nl})^{2}}{\sum_{l=1}^{N} (N-1)}}.$$
 (7)

4.3. При необходимости экстраполяции результата поверки на другие уровни мощности и другие значения спектрального диапазона $S_{\scriptscriptstyle T}$ вычисляют по формуле

$$S_{2} = \sqrt{\frac{\theta_{1}^{2} + \theta_{2}^{2} + \theta_{3}^{2} + \theta_{4}^{2} + \theta_{5}^{2} + \theta_{6}^{2}}{3}} + S_{n} + S_{0}^{2}},$$
(8)

если исключение Ө1 не проводилось, или по формуле

$$S_{s} = \sqrt{\frac{\theta_{2}^{2} + \theta_{3}^{2} + \theta_{4}^{2} + \theta_{5}^{2} + \theta_{6}^{2}}{3} + S_{\rho}^{2} + S_{n}^{2} + S_{0}^{2}},$$
 (8a)

если исключение Ө1 проводилось,

где Θ_3 , Θ_4 , Θ_5 , Θ_6 — систематические составляющие основной погрешности, обусловленные зависимостью от уровня мощности коэффициента преобразования, показаний измерительного (регистрирующего) прибора, коэффициента ослабления механического ослабителя и зависимостью от длины волны коэффициента преобразования соответственно.

Систематические составляющие Θ_3 , Θ_4 , Θ_5 и Θ_6 определяют при выпуске поверяемого средства измерений в обращение.

4.4. Границы основной погрешности поверяемого средства измерений вычисляют по формуле

$$\Delta=2S_{\Sigma}$$
. (9)

5. ОФОРМЛЕНИЕ РЕЗУЛЬТАТОВ ПОВЕРКИ

 Положительные результаты поверки оформляют выдачей свидетельства о государственной поверке.

Средства измерений, прошедшие поверку с отрицательными результатами, к применению не допускают и подлежат изъятию из обращения для ремонта с последующей поверкой.

ПРИЛОЖЕНИЕ Обязательное

ФОРМА ПРОТОКОЛА

протокол	м	

поверки образцового средства измерений средней мощности непрерывного лазерного излучения

воспроизведении размера единицы		передаче размера единицы			Значение Рфі. мВт	
P_{0}	P ₁₀₃	Номер измерения	Р _ы , яВт	Р _{пі} , н Вт	Р _{яі} . иВт	
	Ī	1				
	2					
		3				
		4				
		5				
		6				
		7				
		8				
		9				
		10				

Примечание. Для измерений на длине волны 10,6 мкм форма протокожа сохраняется, при этом $P_{nl}^{'}$ не определяют.

Редактор М. В. Глушкова Техняческий редактор Л. Б. Семенова Корректор Е. И. Морозова

Сдано в наб. 12.10.81 Подп. к печ. 08.12.81 0,75 п. л. 0,57 уч.-изд. л. Тир. 12000 Цена 3 ком.