

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

КОНУСЫ ИНСТРУМЕНТАЛЬНЫЕ

ОСНОВНЫЕ РАЗМЕРЫ

FOCT 25557—82 [CT C9B 147—75]

Издание официальное

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР ПО СТАНДАРТАМ
МОСКВА

к ГОСТ 25557—82 Конусы инструментальные. Основные размеры (Переиздание, февраль 1986 г.)

В каком месте	Напечатано	Должно быть	
Пункт 2. Таблица. Для конуса Морзе 3 конусность	1:19,992=0,05020	1:19,922=0,05020	

(ИУС № 8 2001 г.)

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

КОНУСЫ ИНСТРУМЕНТАЛЬНЫЕ Основные размеры

Machine tool tapers. Basic dimensions ГОСТ 25557—82

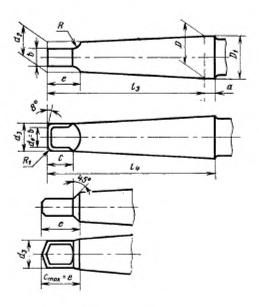
[CT C3B 147-75]

OKII 39 0000

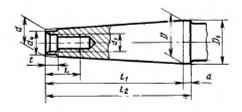
Постановлением Государственного комитета СССР по стандартам от 28 декабря 1982 г. № 5172 срок введения установлен

c 01.01.84

Несоблюдение стандарта преследуется по закону

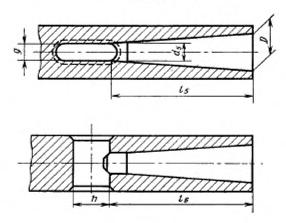

1. Настоящий стандарт распространяется на инструментальные метрические конусы и конусы Морзе.

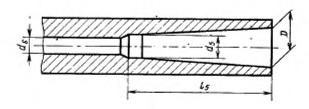
Стандарт полностью соответствует СТ СЭВ 147-75.


 Основные размеры инструментальных метрических конусов и конусов Морзе должны соответствовать указанным на черт. 1, 2 и в таблице.

Наружные конусы

С лапкой


С резьбовым отверстием


Черт. 1

Виутренние конусы

Для конусов с лапкой

Для конусов с резьбовым отверстием

Черт. 2

Размеры

200		T		-			Размеры	
Наименование конуса		Метри	ческий				Mo	
Обозначение конуся				0	1	2	1:19,992= =0,05020	
Қонускость		онусность 1:20-0,05		1:19,212- -0,05205	1:20,047= -0,04988	I:20,020= =0,04995		
	D	D 4 6 9,045		17,780		23,825		
	a	2	3	3	3,5		5	
	D;	4,1	6,2	9,2	12,2	18	24,1	
	d*	2,9	4,4	6,4	9,4	14,6	19,8	
	d ₁	-		- M6	M6	M10	M12	
	d 2			6,1	9	14	19,1	
Наружимй конус	d 3 max			6	8,7	13,5	18,5	
BING	d _{4max}	2,5	4	6	9	14	19	
руж	Limax	23	32_	50	53,5	64	81	
Ha	Izmax	25.	35	53	57	69	86	
	lymax	_		56,5	62	75	94	
	Limax			59,5	65,5	80	99	
	ь			3,9	5,2	6,3	7,9	
	c	_		6,5	8,5	10	13	
	€max			10,5	13,5	16	20	
	Imin				16	24	28	
	Rmax	_		4	5	6 -	7	
	R ₁			1	1,2	1,6	2	
	t _{max}	2	3	4	5		7	

в мм

				Метрический				
4	5	6	80	100	120	160	200	
1:19,254= =0,05194	1:19,002- =0,05263	1:19,180= =0,05214			1:20-	0,05		
31,267	44,399	63,348	80	100	120	160	200	
6	5,5	8	8	10	12 .	16	20	
31,6	44,7	63,8	80,4	100,5	120,6	160,8	201	
25,9	37.6	53,9	70,2	88,4	106,6	143	179,	
M16	M20	M24	M30	- 1	M36		M48	
25,2	36,5	52,4	69	87	105	141	177	
24,5	35,7	51	67	85	102	138	174	
25	35,7	51	67	85	102	138	174	
102,5	129,5	182	196	232	268	340	412	
109	136	190	204	242	280	356	432	
117,5	149,5	210	220	260	300	380	460	
124	156	218	228	270	312	396	480	
11.9	15,9	19	26	32	38	50	62	
16	19	27	24	28	32	40	48	
24	29	40	48	58	68	88	108	
32	40	50	65		80	10	00	
8	10	13	24	30	36	48	60	
2,5	3	4		5	6	- 8	10	
9 -	10	16	24	30	36	48	60	

P	9	9		-	1.1

Наименование конуса Обозначение конуса		Метри	РРОСКИЙ				Me
		4	6	0	1	2	3
2	d _s	3	4,6	6,7	9,7	14,9	20,2
DHALDERHARK KORAC de lomin lo lo	d ₆			_	7	11,5	14
	I _{6min}	25	34	52	56	67	84
syrbe	I ₄	21	29	49	52	62	78 -
ā	_g	2,2	3,2	3,9	5,2	6,3	7,9
	h	8	12	15	19	22	27

^{*} Размеры D_1 , d и d_2 являются теоретическими и зависят от диаметра D ** Диаметр лапки d_3 может по длине превышать размер c при условии, что

Пример условного обозначения конуса Морзе 3, Морзе 3 AT8 ГОСТ 25557—82

То же, метрического конуса 160, степени точности АТ7: Метр. 160 AT7 ГОСТ 25557—82

3. Неуказанные размеры концов конусов с резьбовым отвер-

4. Предельные отклонения размеров конусов — по ГОСТ

Продолжение

ae			Метрическ	нA			
4	.5	6	80	100	120	160	200
26,5	38,2	54,6	71,5	90	108,5	145,5	182,5
18	23	27	33	39		52	
107	135	188	202	240	276	350	424 -
98	125	177	186	220	254	321	388
11,9	15,9	19	26	32	38	50	62
32	38	47	52	60	70	90	110

и номинальных размеров a, l_1 и l_3 . $c_{\max} = e$.

степени точности АТ8:

стием — по ГОСТ 14034—74. 2848—75.

Редактор В. С. Бабкина Технический редактор Э. В. Митяй Корректор С. И. Ковальва

Сдано в наб. 17,06,86 Подп. в печ. 15,10,86 0,75 усл. п. л. 0,75 усл. кр.-отт. 0,39 уч.-изд. л. Твраж 12 000

к ГОСТ 25557—82 Конусы инструментальные. Основные размеры (Перенздание, февраль 1986 г.)

В каком месте	Напечатано	Должно быть		
Пункт 2. Таблица. Для конуса Морзе 3 конусность	1:19,992=0,05020	1:19,922=0,05020		

(ИУС № 8 2001 г.)