

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

АРСЕНИД ГАЛЛИЯ И ФОСФИД АЛЛИЯ МОНОКРИСТАЛЛИЧЕСКИЕ

ИЗМЕРЕНИЕ УДЕЛЬНОГО ЭЛЕКТРИЧЕСКОГО СОПРОТИВЛЕНИЯ И КОЭФФИЦИЕНТА ХОЛЛА

ГОСТ 25948-83 (СТ СЭВ 3910-82)

Издание официальное

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР ПО СТАНДАРТАМ
МОСКВА

РАЗРАБОТАН Министерством цветной металлургии СССР ИСПОЛНИТЕЛИ

А. В. Елютин, Н. Н. Соловьев, Н. И. Сучкова, В. М. Михайлов

ВНЕСЕН Министерством цветной металлургии СССР

Член Коллегии А. П. Снурников

УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 28 октября 1983 г. № 5178

АРСЕНИД ГАЛЛИЯ И ФОСФИД ГАЛЛИЯ МОНОКРИСТАЛЛИЧЕСКИЕ

Измерение удельного электрического сопротивления и коэффициента Холла ГОСТ 25948—83

Monocrystal gallium arsenide and gallium phosphide.

Measurement of specific electric resistance
and Hall-coefficient

[CT C3B 3910-82]

ОКСТУ 1772

Постановлением Государственного комитета СССР по стандартам от 28 октября 1983 г. № 5178 срок действия установлен

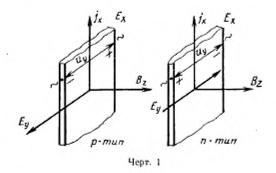
с 01.01.85 до 01.01.90

Несоблюдение стандарта преследуется по закону

Настоящий стандарт устанавливает метод измерения удельного электрического сопротивления, коэффициента Холла и определения типа проводимости, концентрации и холловской подвижности основных носителей заряда для полупроводниковых материалов с удельным электрическим сопротивлением от 10-4 до 10° Ом см монокристаллических арсенида галлия и фосфида галлия.

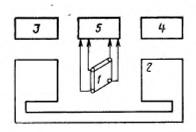
Стандарт полностью соответствует СТ СЭВ 3910-82.

1. СУЩНОСТЬ МЕТОДА


- 1.1. Определение удельного электрического сопротивления основано на измерении продольного электрического поля E_{κ} и плотности тока j_{κ} , вызываемого этим полем.
- 1.2. Определение коэффициента Холла основано на измерении поперечного электрического поля E_y (U_y), возникающего в полупроводнике, помещенном в магнитное поле индукций B_x при протекании через него тока плотностью j_x в направлении, перпендикулярном магнитному полю.
- Тип проводимости полупроводникового материала устанавливают по знаку ЭДС Холла в соответствии с черт. 1.
- Концентрацию и подвижность основных носителей заряда определяют расчетным путем на основании данных по измере-

Издание официальное

Перепечатка воспрещена


© Издательство стандартов, 1984

нию удельного электрического сопротивления и коэффициента Холла.

2. АППАРАТУРА

 Структурная схема установки для измерения удельного электрического сопротивления и коэффициента Холла представлена на черт, 2.

1 — намеряемый образец; 2 — магнят;
 3 — источник постоянного тока; 4 — измерительное устройство;
 5 — коммутирующее устройство

Черт. 2

- 2.2. Требования к элементам структурной схемы в зависимости от параметров измеряемого материала приведены в табл. 1—2.
- 2.2.1. Магнит, обеспечивающий создание магнитных полей изменяемой полярности, должен удовлетворять требованиям табл. 1.

Таблица 1

Наяменование материала	Верхинй предел подвижности ос- новных посителей заряда н , ем ^в . В ⁻¹ . с ⁻¹	Верхний предел магинтной индук- ции в зазоре метията В. Т	Допустимая неоднородность магнитиого по- ля в области из мерения, %, не более	
Арсенид галлия п и р — типа	1-10 ³ 5-10 ³ 7-10 ³ 2-10 ⁴ 1-10 ⁵	1,0 0,5 0,3 0,2 0,05	±2	
Фосфид галлия о и р — типа	2·10 ² 1·10 ³	1.0	±2	

2.2.2. Источник постоянного тока, обеспечивающий создание в измерительной цепи электрического тока изменяемой полярности, должен удовлетворять требованиям табл. 2.

Таблица 2

Верхний пре- дел удельного электриче- ского сопро- тивле- ния р.Ом - см	Верхний предел электри- ческого тока /, А	Допустимая нестабиль- кость электры- ческого тока за время из- мерения. Ъ	Входное электриче- ское сопро- тивление взме- рительного прибора R, Ом, не менее	Чувствительность измерительного прибора, В
1.10-3	5-10-1	±1	104	10-6
$1 \cdot 10^{-2}$	2-10-1	±1	104	10-5
1-100	I · 10 ⁻¹	2:1	104	10-5
1-101	1.10-2	±1	106	10-5
1.109	1.10-3	±1	103	10-5
1 · 103	1-10-4	±1	107	10-5
1-104	1.10-5	±1	105	10-5
1-105	1.10-6	±1	102	19-4
1-106	1-10-7	±1	10 io	10-4
1 - 107	1.10 -8	±1	10:1	10-4
1.108	1-10-9	±1	1012	10 -3
1-100	1.10-10	±1	1013	10-3

- 2.2.3. Прибор для измерения электрического напряжения с погрешностью не более 1%, должен соответствовать требованиям табл. 2.
- 2.2.4. Коммутирующее устройство должно обеспечивать проведение измерительных операций с использованием одного измери-

тельного прибора, Значение величны электрического сопротивления изоляции контактов коммутирующего устройства не должно быть менее входного электрического сопротивления измерительного устройства.

2.3. Вспомогательные средства

2.3.1. Держатель образца должен обеспечивать:

перпендикулярность плоскости образца направлению магнитного поля с откловением от перпендикулярности не более ± 3 °;

возможность проведения измерений при затемнении образца; соответствие электроизоляционных свойств конструкционных

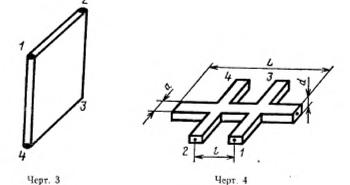
материалов сопротивлению измерительного прибора.

2.3.2 Микрометр или другой инструмент для измерения толщины образца с погрешностью не более $1\cdot 10^{-3}$ см и с погрешностью не более $3\cdot 10^{-4}$ см для измерения толщины $d\leqslant 0.06$ см.

2.3.3. Прибор для имерения силы электрического тока с по-

грешностью не более 0,5%.

 2.3.4. Прибор для измерения абсолютного значения, магнитной индукции с погрешностью не более 2%.


2.3.5. Термометр с погрешностью измерения не более 0,5К.

3. МЕТОДЫ ОТБОРА ОБРАЗЦОВ

3.1. Измерения проводят на образцах в виде плоскопараллельных пластин (черт. 3) либо на образцах крестообразной формы (черт. 4).

 З.2. Измерения полуизолирующего материала с удельным электрическим сопротивлением Q > 10⁶ Ом см проводят на образ-

цах крестообразной формы.

З.З. Требования к характеристикам образцов приведены в табл.

Таблица 3

Фор. ма об- разца	Длина образ- ца L, см	Ширина образца 4, см	Толщина образца d, см	Допускае- мое откло- нение от средней толщины образца, %, не более	Расстояние между ком- тактами 1 и 2, 3 и 4 1	Отношение лимейных размеров контактов контактов мальному расстоянно между ниме, не более
Плас- тана	не менее 0,5	не менес 0,5	0,02 = 0,1 >0,1 -0,2	±5 ±2,5	=	0,1 0,1
Крест	>3a	<\\frac{L}{3}	0,02-0.1 >0,1-0.2	±5 ±2,5	$\frac{L}{4} < l < \frac{L}{2}$	-

4. ПОДГОТОВКА К ИЗМЕРЕНИЯМ

- 4.1. На образец крестообразной формы наносят шесть электрических контактов.
- 4.2. На образец в виде плоскопарадлельной пластины наносят четыре электрических контакта, располагая их на периферии пластины.

Рекомендуется располагать электрические контакты на боковой поверхности пластины (черт. 3).

4.3. Электрические контакты должны обладать:

линейной вольт-амперной характеристикой (результаты измерения не должны зависеть от конкретных режимов измерений);

малым переходным сопротивлением (рекомендуемые методы оценки устанавливаются в зависимости вых монокристаллических материалов).

5. ПРОВЕДЕНИЕ ИЗМЕРЕНИЙ

- Измерения проводят при фиксированной температуре. Допускаемое отклонение температуры за время измерения не более 0,5 К.
- 5.2. Проведение измерений на образцах в виде плоскопараллельных пластин.
- Образец устанавливают в держатель и пропускают через него электрический ток, используя одну из двух пар контактов,

Фиксируют значение тока I и разности потенциалов U, возникающей на второй паре контактов, в следующем порядке:

$$U_{3,4(+I_{1,2})}$$
, $U_{3,4(-I_{1,2})}$;
 $U_{1,4(+I_{3,2})}$, $U_{1,4(-I_{3,2})}$;
 $U_{1,2(+I_{3,4)}}$, $U_{1,2(-I_{3,4})}$;
 $U_{2,3(+I_{1,4})}$; $U_{2,3(-I_{1,4})}$.

5.2.2. Вводят магнитное поле, фиксируют значения тока I, магнитной индукции B и разности потенциалов U в следующем порядке:

$$U_{2,4(+I_{I,3+B})}$$
, $U_{2,4(-I_{I,3+B})}$;
 $U_{2,4(-I_{I,3-B})}$, $U_{2,4(+I_{I,3-B})}$;
 $U_{I,3(+I_{2,4+B})}$, $U_{I,3(-I_{2,4+B})}$;
 $U_{I,3(-I_{2,4-B})}$, $U_{I,3(+I_{2,4-B})}$.

Цифровые индексы соответствуют контактам образца (черт. 3). Значения токов при измерениях в пределах одного пункта (5.2.1. или 5.2.2) должны быть одинаковыми; значения токов при выполнении измерений по разным пунктам могут различаться в пределах требования табл. 2.

5.3. Проведение измерений на образцах кресто-

образной формы

5.3.1. Образец устанавливают в держатель и пропускают через него электрический ток. Фиксируют значения электрического тока в двух направлениях $+I_s$, $-I_p$ и разности лотенциалов U:

$$U_{1,2(+1)};$$

 $U_{1,2(-1)};$
 $U_{3,4(+1)};$
 $U_{3,4(-1)}.$

5.3.2. Вводят магнитное поле, фиксируют значения магнитной индукции В, электрического тока в двух направлениях $+I_B$, — I_B и разности потенциалов U:

$$U_{I,3(+1,+B)}$$
, $U_{I,2(-1,-B)}$;
 $U_{2,4(+1,+B)}$, $U_{2,4(-1,-B)}$;
 $U_{2,4(-1,+B)}$, $U_{2,4(+1,-B)}$;
 $U_{I,3(-1,+B)}$, $U_{I,3(+1,-B)}$.

Цифровые индексы соответствуют контактам образца (черт. 4).

6. OEPASOTKA PESYNISTATOR

результатов измерений на 6.1. Обработка разце в форме плоскопараллельной пластины

6.1.1. Значения напряжений $U_{p_1},\ U_{p_2},\ U_{y_1},\ U_{y_2}$ и коэффи-

циенты и1, и2 вычисляют по формулам:

$$U_{p_1} = \frac{U_{3,4(+1)} + U_{3,4(-1)} + U_{2,3(+1)} + U_{2,3(-1)}}{4}; \quad (1)$$

$$U_{t_0} = \frac{U_{I,d(+1)} + U_{I,d(-1)} + U_{2,l(+1)} + U_{2,l(-1)}}{4}; \qquad (2)$$

$$\alpha_1 = \frac{U_{3,4(+1)} + U_{3,4(-1)}}{U_{2,3(+1)} + U_{2,3(-1)}};$$
(3)

$$\alpha_2 = \frac{U_{I,I(+1)} + U_{I,I(-1)}}{U_{2,I(+1)} + U_{2,I(-1)}}.$$
 (4)

При определении коэффициентов α_1 и α_2 делят большую сумму на меньшую, чтобы получить результат более 1.

$$U_{y_i} = \frac{U_{2,4(+1,+B)} - U_{2,4(-1,+B)} + U_{2,4(-1,-B)} - U_{2,4(+1,-B)}}{4}; (5)$$

$$U_{y_i} = \frac{U_{I,3(+I,+B)} - U_{I,3(-I,+B)} + U_{I,3(-I,-B)} - U_{I,3(+I,+B)}}{4}.$$
 (6)

При определении значений U_{y_i} и U_{y_s} алтебранчески учитывают знаки величин, полученных при измерениях.

6.1.2. Определяют поправочные коэффициенты f₁ и f₂, в соответ-

ствии с обязательным приложением.

6.1.3. Средние значения напряжений U_{a} и U_{y} вычисляют формулам:

$$U_{\rm p} = \frac{U_{\rm Pl} \cdot f_1 + U_{\rm Pl} \cdot f_2}{2}; \tag{7}$$

$$U_{y} = \frac{U_{y} + U_{y}}{2}. \tag{8}$$

6.1.4. Удельное электрическое сопротивление Q, Ом-см, вычисляют по формуле

$$\rho = \frac{4.53 \cdot d}{I} U_{\rho}, \qquad (9)$$

где I — значение электрического ток $oldsymbol{a}$, при котором проводились измерения по п. 5.2.1,А;

d — толщина измеряемого образца, см;

U_p — среднее значение напряжения при измерении удельного электрического сопротивления, В.

Коэффициент Холла (R_H), см³/Кл, вычисляют по формуле

$$R_{\rm a} = 10^4 \frac{d}{I \cdot B} \cdot U_{\rm y}, \qquad (10)$$

где В - значение индукции магнитного поля, Т;

 I — значение электрического тока, при котором проводились измерения по п. 5.2.2,A;

 U_y — среднее эначение ЭДС Холла, В.

6.1.6. Концентрацию основных носителей заряда N, см³, вычисляют по формуле

$$N = \frac{r}{l \cdot R_n} = \frac{6.25 \cdot 10^{18}}{R_n} , \qquad (11)$$

тде $I \longrightarrow$ заряд электрона; $l = 1,602 \cdot 10^{-19}$ Кл;

г — ходловский фактор, принимаемый равным 1.

6.1.7. Холловскую подвижность основных носителей заряда μ_B , $c M^2 \cdot B^{-1} \cdot c^{-1}$, вычисляют по формуле

$$\mu_n = \frac{R_n}{\rho}.$$
 (12)

 6.2. Обработка результатов измерений на образце крестообразной формы

6.2.1. Значения напряжений U_{φ} , $U_{y_{\bullet}}$, $U_{y_{\bullet}}$ вычисляют по формулам:

$$U_s = \frac{|U_{I,2(+I)}| + |U_{I,2(-I)}| + |U_{3,4(+I)}| + |U_{3,4(-I)}|}{4}; (13)$$

$$U_{y_1} = \frac{U_{I,3(+I,+B)} - U_{I,3(-I,+B)} - U_{I,3(+I,-B)} + U_{I,3(-I,-B)}}{4}; \quad (14)$$

$$U_{y_2} = \frac{U_{2,4(+1,+B)} - U_{2,4(-1,+B)} - U_{2,4(+1,-B)} + U_{2,4(-1,-B)}}{4}.$$
 (15)

6.2.2. Средние значения U_y , I_z , I_B вычисляют по формулам:

$$U_y = \frac{U_{y_i} + U_{y_i}}{2}$$
; (16)

$$I_{\varrho} = \frac{|+I_{\varrho}|+|-I_{\varrho}|}{2};$$
 (17)

$$I_B \approx \frac{|+I_B|+|-I_B|}{2}$$
. (18)

 Удельное электрическое сопротивление Q, Ом.см, и коэффициент Холла R_и, см³/Кл, вычисляют по фрмулам:

$$\rho = \frac{U_{\rho} \cdot S}{I_{\rho} \cdot l}; \qquad (19)$$

$$R_{H} = \frac{10^{1} \cdot U_{y} \cdot d}{I_{B} \cdot B}, \qquad (20)$$

где I_o , I_B — значения электрического тока, вычисленные по формулам (17) и (18), А;

S — площадь поперечного сечения образца, см²: $S = a \cdot d$,

где d - толщина образца, см;

а — ширина образца, см;

 U_{ν} , U_{ν} — значения напряжений, вычисленные по формулам (13), 16), В;

В — значение индукции магнитного поля в зазоре магнита, Т:

1 — расстояние между контактами 1 и 2, 3 и 4, см (черт. 4).

6.2.4. Концентрацию и подвижность основных носителей заряда вычисляют по формулам (11) и (12).

6.3. Результатом измерения удельного электрического сопротивления является величина, вычисленная по формулам (9) или (19):

6.4. Случайная погрешность измерения удельного электрического сопротивления, характеризующая сходимость результатов измерений, не превышает ±2% с доверительной вероятностью 0.95.

6.5. Суммарная погрешность измерения удельного электрического сопротивления не превышает ±12% с доверительной вероятностью 0,95.

6.6. Результатом измерения коэффициента Холла является

величина, вычисленная по формуле (10) чли (20).

6.7. Случайная погрешность измерения коэффициента Холла, характеризующая сходимость результатов измерений, не превышает ±4% с доверительной вероятностью 0.95.

6.8. Суммарная погрешность измерения коэффициента Холла

не превышает ±15% с доверительной вероятностью 0,95.

6.9. Суммарная погрешность определения подвижности основных носителей заряда не превышает ±15% с доверительной вероятностью 0,95.

Значение поправочного коэффициента f в зависимости от значения коэффициента

•	,		,		1
1,0	1,000	17.0	0,612	90,0	0,413
1.5	0,985	18,0	0,604	95,0	0,408
2.0	0,960	19,0	0,596	100,0	0,400
2.5	0,932	20.0	0,588	110,0	0,390
3,0	0,906	22,0	0,574	120,0	0,388
3.5	0,882	24.0	0.562	130,0	0,382
4,0	0,860	26,0	0,551	140,0	0,376
4.5	0,839	28.0	0,541	150,0	0.37
5,0	0,821	29,0	0,536	160,0	0,366
5,5	0,804	30,0	0,532	170,0	0,36
6,0	0,789	32,0	0,524	180,0	0,357
6.5	0,774	34,0	0,516	190,0	0,35
7,0	0,761	36,0	0,509	200,0	0,35
7,5	0,750	38,0	0,503	250,0	0,33
8,0	0,738	40,0	0,496	300,0	0,32
8,5	0,727	45,0	0,483	350,0	0,31
9,0	0,717	50,0	0,471	400,0	0,307
9,5	0,708	55,0	0,461	460,0	0,30
10.0	0,699	60,0	0.452	500,0	0,29
11,0	0,682	65.0	0,444	600,0	0,28
12,0	0,668	70,0	0,436	700,0	0,27
13.0	0,655	75.0	0,430	800,0	0,27
14,0	0,643	80,0	0,423	900,0	0,26
15,0 16,0	0,632 0,622	85,0	0,418	1000,0	0,26

Редактор И. В. Виноградская Технический редактор В. И. Тушева Корректор В. И. Варенцова

Сдано в наб. 11.11.83. 0.58 уч-над. д. Поди, в печ. 21.02.84. Тир. 8000 0,75 усл. п. л

0,75 усл кр-отт. Цена 3 коп. Изменение № 1 ГОСТ 25948--83 Арсенид и фосфид галлия монокристаллические. Измерение удельного электрического сопротивления и коэффициента Холла Утверждено и введено в действие Постановлением Государственного комитета СССР по стандартам от 22.03.89 № 606

Дата введения 01.01.90

Вводная часть, пункт 1.3. Заменить слова «тип проводимости» на «тип электропроводности».

Чертеж I под словами «р-тип» дополнить обозначением: Пункт 1.4.

 $(R_{\rm H} > 0)$; «л-тип» - обозначением $(R_{\rm H} < 0)$.

Раздел 2 дополнить пунктами — 2.1.1, 2.1.2 «2.1.1. Измерительная установка должна быть аттестована. Основная относительная погрешность установки при контроле образцов с удельным электрическим сопротивлением $ho < 10^6$ Ом-см не должна превышать при измерении удельного электрического сопротивления ±5 % и коэффициента Холла ±8 %; при контроле образцов с удельным электрическим сопротивлением р≥104 Ом·см не должиа превышать соответственно ±12 % и ±15 %.

2.1.2. Допускается проведение измерений и обработка результатов с использованием средств автоматизации по алгоритмам, изложенным в настоящем стандарте, в частности использование установок типа «Холл-100», «Холл-200» при условии соблюдения требований п. 2.1.1».

Пункт 2.2.1. Таблицу 1 изложить в новой редакции

Таблица 1

Наниенование материада	Подвижность основных носителей зара- за р. см²-В 1-с 1, не более	Магнитная инаукция в запоре магнита В, Тл. не более	Допустимая неодно- родиость магнитно- го подя в области намеренви, %, не более
Арсенид галлия п-и р-типа электропро- водности	3-10 ³ 7-10 ³ 1-10 ⁴	1,0 0,7 0,5	±3
Фосфид галлия n- и p-типа электропро- водности	2-102	1,0	±3

Примечание Измерение коэффициента Холла в арсениде галлия р-типа электропроводности с концентрацией основных носителей 1-10¹⁹ см - 3 выполняют при значении В не менее 0.7 Тл.

Пункт 2.2.2 дополнить словами: «Погрешность регистрации электрического тока не должна превышать 1 % при измерении материала с удельным электрическим сопротивлением $\rho < 10^6$ Ом см и 3 % при измерении полунзолирующего материала с удельным электрическим сопротивлением р ≥ 10⁴ Ом·см»;

таблицу 2 изложить в новой редакции.

(Продолжение см. с. 60)

Удельное элек- трическое сопро- тивление р. Ом.см, не более	Значение влектричес- кого тока I, А, не более	Допустимая пе- стабильность электрического тожа за время измерения, %, не более	Входное электричес- кое сопротивление измерительного прибора R _{BX} . Ом, не менее	Чуветвительност взиерительного прибога, В
5-10-1	5-10-1	±1	10*	10-7
3-102	2-10-1	±1	104	10-6
1-10°	1-10 1	±i	10*	10 -5
1-101	1-10-2	2.1	105	10-5
1-102	1-10-3	=1	100	10-3
1-103	1-10-4	±1	107	10-5
1-104	1-10 -5	= i	108	10~3
1-106	1-10-6	+1	109	10-4
1-100	5-10-7	±.5	1010	10 -3
1-107	5-10-5	±5	10 ¹¹	10-3
1.10*	5-10-9	±3	1011	10-3
1-109	5-10-10	±5	1012	10-5
			1	1

Пункт 2.2.3 изложить в новой редакции: «2.2.3. Прибор для измерении элек-

трического напряжения должен удовлетворять требованиям табл. 2.

Погрешность измерения влектрического напряжения не должна превышать 1 % при контроле материала с удельным электрическим сопротивлением 0 < :06 Ом см и 2,5 % — при контроле полуизолирующего материала с удельным</p> электрическим сопротивлением $\rho > 10^6$ Ом-см».

Пункт 2.24 после слов «должно обеспечивать» дополнить словами «при контроле одного образца»

Пункт 2.3.3 исключить.

Пункт 3.1. Заменить слово: «(черт. 3)» на «в форме квадрата (черт. 3) или произвольной формы».

Раздел 3 дополнить лунктом -- 3.1.1: «3.1.1. Допускается проводить измерения на образцах в форме параллелениведа, удова творяющих требованиям образдам крестообралной формы (табл 3)»

Иулкт 32 дополнить словами: «(либо в форме парадлелениледа)».

Пункт 33 Таблица 3 Графа «Длина образца» Заменить значение: >3a

дополнить аблацем (после табл. 3): «Для пластии произвольной формы поперсчный размер образца должен быть не менее 0,7 см».

Пувкт 4.2 и сле слов «располагая их на» дополнать словами: «торцовой поверхности или»;

второй абзац исключить

Раздел 4 дополнять пунктами - 4.4, 44.1, 44.2: «44. Перед выполнением измерений дектрофизических параметров измеряют геометрические размеры образца.

4.4.1 Толщину образца в виде плоскопараллельной пластины измеряют в трех точках: одной в центре и двух на периферии пластины. Если поперечный линейный размер образца превышает 5 см, толщину образца измеряют в 5 точках: одной в центре и четырех на периферии образца. За резудьтат измерения толщины принимают среднее арифметическое полученных значений.

4.4.2. Геометрические размеры образцов крестообразной формы измеряют два раза в противоположных концах образца. За результат измерений прини-

мают среднее арафметическое полученных значений».

Пункт 3.2.1. Заменить слова: «используя одну из двух пар контактов» на «используя соседиюю по периметру образца пару контактов».

(Продолжение см. с. 61).

Пункт 6.3.1. Формулы 1-4 изложить в новой редакции:

$$U_{\rho_1} = \frac{U_{3,4(+I)} - U_{3,4(-I)} + U_{2,3(+I)} - U_{2,3(-I)}}{4} \tag{1};$$

$$U_{\rho_2} = \frac{U_{4,1(+I)} - U_{4,1(-I)} + U_{1;2(+I)} - U_{1,2(-I)}}{4} \tag{2};$$

$$a_1 = \frac{U_{3,4(+I)} - U_{3,4(-I)}}{U_{2,3(+I)} - U_{2,3(-I)}}$$
(3);

$$a_{5} = \frac{U_{4,1(+I)} - U_{4,1(-I)}}{U_{1,2I+I} - U_{1,2I-II}}$$
(4);

дополнить абзацем (после первого). «При вычислении значений напряжений U_{ρ_1} , U_{ρ_2} и коэффициентов α_1 , α_2 алгебранчески учитывают знаки величин, получениых при измерениях».

Пункт 6.1.6. Заменить обозначение: l на e (3 раза). Пункт 6.2.1. Формулу 13 изложить в новой редакции:

$$U_{p} = \frac{U_{1,2(+I)} - U_{1,2(-I)} + U_{3,4(+I)} - U_{3,4(-I)}}{4}$$
(13);

дополнить абзацем: «При определении значений $U_{
ho}$, $U_{
ho_1}$, $U_{
ho_2}$ актебранчески учитывают знаки величин, полученных при измерениях».

Пункты 6.3-6.9 исключить.

Раздел 6 дополнить пунктами -6.2.5-6.2.10: <6.2.5. Значения удельноговолунаолирующих материалах ($\rho > 10^6$ Ом-см) могут быть приведены к температуре T_1 по формулам

$$\rho_{(T_0)} = Q_{(T)} \cdot \rho_{(T)}^{-1}$$
; (21)

$$N_{(T_i)} = Q_{(T)} \cdot N_{(T)};$$
 (22)

(Продолжение см. с. 62)

$$Q_{(T)} = \exp[E/K(\frac{1}{T} - \frac{1}{T_0})],$$
 (23)

eze

К — постоянная Больцмана; К = 8,62-10-5 эВ К-1

T — температура измерения, K;

 Е — энергия активации глубокого примесного центра, определяющего полувзолирующие свойства материала, эВ.

Для GaAs n-типа электропроводности E = 0.8 эВ.

Для GaP < Fe < p-типа электропроводности E = 0,7 эВ.

6.2.6. Результаты измерений представляют числом с тремя значащими цифрами с указанием порядка величины. Результаты измерений и вычислений округляют в соответствии с правилом: если первая (справа налево) из отбрасываемых цифр более или равна 5, то последнюю цифру увеличивают на 1; если менее 5, то оставшиеся цифры не изменяют.

6.2.7. Интервал, в котором находится минимальное значение суммарной порешности измерения удельного электрического сопротивления с доверительной вероятностью P=0,95, составляет ±5 % для образцов с удельным электрическим сопротивлением р < 10⁸ Омем; ±12 % для образцов с удельным электри-

ческим сопротивлением р>10° Ом·см.

6.2.8. Интервал, в котором находится минимальное значение суммарной погрешности измерения концентрации основных носителей заряда с доверительной вероятностью P=0,95, составляет ±8 % для образцов с удельным электричествим сопротивлением р<10⁴ Ом<м; ±15 % для образцов с удельным электрическим сопротивлением р>10⁶ Ом<м;</p>

6.2.9. Йитервал, в котором находится минимальное значение суммарной погрешности измерения подвижности основных носителей заряда с доверительной вероятностью P = 0.95, составляет ±8 % для образцов с удельным электрическим сопротввлением р < 10° Ом-см; ±10 % для образцов с удельным электрическим сопротввлением р < 10° Ом-см; ±10 % для образцов с удельным электрическим.</p>

ким сопротивлением р > 106 Ом-см.

6.2.10. Наличне в контроляруемом образце посторонних включений, неоднородности распределения электрофизических параметров приводит к увеличению суммарной погрешности измерений, которую устанавливают при метрологической аттестации метода применительно к конкретной продукции».

(MYC № 6 1989 r)