# ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА СС

#### **МАТЕРИАЛЫ НЕМЕТАЛЛОРУДНЫЕ**

Методы определения массовых долей оксидов кальция и магиия

ГОСТ 26318.6—84

Non-metallic ore materials.

Methods for determination of calcium oxide
and magnesium oxide mass fractions

**OKCTY 5709** 

Срок действия с 01.01.86 до 01.01.96

Настоящий стандарт распространяется на полевошпатовые и кварцполевошпатовые материалы, слюду, диопсид и устанавливает комплексонометрический метод определения массовых долей оксидов кальция и магния и фотометрический метод определения массовой доли оксида магния.

#### **1. ОБЩИЕ ТРЕБОВАНИЯ**

 1.1. Общие требования к методам определения массовых долей оксидов кальция и магния — по ГОСТ 26318.0—84.

# 2. КОМПЛЕКСОНОМЕТРИЧЕСКИЯ МЕТОД ОПРЕДЕЛЕНИЯ ОКСИДОВ КАЛЬЦИЯ И МАГНИЯ

Метод основан на взаимодействии кальция с трилоном Б в присутствии индикаторов кислотного хром темносинего или флуорексона при рН 13 и суммы кальция с магнием при рН 10 в присутствии эриохром черного Т или кислотного хром темносинего.

2.1. Аппаратура, реактивы, растворы

2.1.1. Для проведения анализа применяют:

титратор фотоэлектрический;

мешалку магнитную;

аммиак водный по ГОСТ 3760-79;

аммоний хлористый по ГОСТ 3773-72;

## Издание официальное

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен без разрешения Госстандарта СССР гидроксиламин солянокислый по ГОСТ 5456—79, водный раствор концентрации 1 г в 100 см<sup>3</sup>:

калия гидроокись по ГОСТ 24363-80, раствор концентрации

200 г/дм3, хранят в полиэтиленовой посуде;

натрий хлористый по ГОСТ 4233—77;

калий хлористый по ГОСТ 4234—77;

кислоту соляную по ГОСТ 3118—77, разбавленную 1:3; спирт этиловый по ГОСТ 5962—67;

сахарозу по ГОСТ 5833—75;

уротропин, раствор концентрации 100 г/дм3;

трилон Б по ГОСТ 10652-73, 0,01 М раствор, приготовлен-

ный разбавлением стандарт-титра;

хлоридно-аммиачный буферный раствор (рН 10), приготовленный растворением 20 г хлористого аммония в 100 см<sup>3</sup> аммиака и доведением водой до 1 дм<sup>3</sup>;

кислотный хром темносиний, приготовленный растворением 0,5 г индикатора в 20 см<sup>3</sup> хлоридно-аммиачного буферного раствора и разбавлением до 100 см<sup>3</sup> этиловым спиртом или растиранием 0,1 г индикатора с 10 г хлористого натрия;

флуорексон, приготовленный растиранием 0,1 г индикатора с

10 г хлористого натрия;

эриохром черный T, приготовленный растиранием 0,1 г индикатора с 10 г хлористого натрия.

2.2. Подготовка к анализу

2.2.1. Подготовка анализируемого раствора для титрования

кальция и магния

От анализируемых растворов 2 или 3 и растворов холостого опыта 2 или 3 по ГОСТ 26318.1—84 отбирают по 100 см³ в стаканы вместимостью 250—300 см³. Растворы нагревают до кипения, приливают по каплям аммиак до рН 2—3 по универсальной индикаторной бумаге, затем добавляют при перемешивании 20 см³ раствора уротропина и выдерживают 10—15 мин при 70—80 °С для отделения гидрооксидов полуторных оксидов и диоксида кремния. Растворы фильтруют в мерные колбы вместимостью 250 см³, фильтры с осадками промывают горячей водой, растворы охлаждают, доводят до метки водой и перемешивают.

2.1.1, 2.2.1. (Измененная редакция, Изм. № 2).

2.3. Проведение анализа

2.3.1. Титрование кальция

В два стакана вместимостью 150 см³ при титровании на титраторе или в две конические колбы вместимостью 250 см³ при визуальном гитровании отбирают по 50 см³ растворов, полученных по п. 2.2.1. К растворам прибавляют по 0,1—0,2 г сахарозы для предотвращения соосаждения кальция с магнием, 5—6 капель раствора солянокислого гидроксиламина, по 15 см³ гидрокиси калия и по 10—15 капель индикатора кислотного хром

темносинего при титровании на титраторе или по 0,01-0,02 г флуорексона при визуальном титровании. Растворы титруют 0.01 М раствором трилона Б до остановки стрелки при титровании на титраторе или до перехода окраски раствора из флуоресцирующей зеленой в розовую окраску при визуальном титровании с флуорексоном. Титрование с флуорексоном лучше водить на темном фоне.

2.3.2. Титрование суммы кальция и магния

Аликвотные части 50 см3 растворов, полученных по п. 2.2.1, помещают также в стаканы или колбы, прибавляют по 0,1-0,2 г сахарозы и 5-6 капель раствора солянокислого гидроксиламина, прибавляют по 15 см3 буферного раствора (рН 10), 0,1-0,2 г эриохром черного Т или 10-15 капель кислотного хром темносинего и титруют 0,01 М раствором трилона Б на титраторе до остановки стрелки или визуально до перехода окраски раствора в голубую.

При больших содержаниях оксидов кальция и магния (в оксиде) допускается титрование 0.05 м раствором трилона Б.

 Обработка результатов
 Массовую долю оксида кальция (X) в процентах вычисляют по формуле

$$X = \frac{T(V-V_1)\cdot 100}{m} ,$$

где T — титр раствора трилона Б (0,01 м), выраженный в граммах оксида кальция, равный 0,0005608 г/см3;

V — объем раствора трилона Б, израсходованный на вание кальция в анализируемом растворе, см3;

 $V_1$  — объем раствора трилона Б, израсходованный на вание кальция в растворе холостого опыта, см3;

 т — масса навески материала, соответствующая аликвотной части раствора, взятой для титрования кальция, г.

2.4.2. Массовую долю оксида магния (X) в процентах ляют по формуле

$$X = \frac{T(V-V_1) \cdot 100}{m} ,$$

где Т — титр раствора трилона Б (0,01 м), выраженный в мах оксида магния, равный 0,0004032 г/см3;

 V — объем раствора трилона Б, израсходованный на титрование суммы оксида кальция и магния в анализируемом растворе, см3;

V<sub>1</sub> — объем раствора трилона Б, израсходованный на титрова-

ние кальция в анализируемом растворе, см3;

- т масса навески материала, соответствующая аликвотной части раствора, взятой для титрования суммы кальция и магния, г.
- 2.4.3. Допускаемое расхождение между результатами двух параллельных определений не должно превышать значений, приведенных в таблице.

| Массовая доля оксиде<br>кальшия или магиня, % | Допускаемое расхождение, % |                              |
|-----------------------------------------------|----------------------------|------------------------------|
|                                               | Онсид нальции              | Оксид матиня                 |
| 0,2                                           | 0,11                       | 0.06                         |
| 0,5                                           | 0.15                       | 0,06<br>0,09<br>0,13<br>0.18 |
| 1,0                                           | 0,19                       | 0.13                         |
| 2,0                                           | 0.23                       | 0.18                         |
| 5,0                                           | 0,19<br>0,23<br>0,33       | 0.27                         |
| 2,0<br>5,0<br>10                              | <u>-</u>                   | 0.39                         |
| 20<br>30                                      |                            | 0,27<br>0,39<br>0,56<br>0,67 |
| 30                                            | -                          | 0.67                         |

(Измененная редакция, Изм. № 2).

## 3. ФОТОМЕТРИЧЕСКИЯ МЕТОД ОПРЕДЕЛЕНИЯ МАГНИЯ С ФЕНАЗО

Метод основан на образовании адсорбционного соединения магния с феназо. Определение проводят из анализируемого раствора 3 по ГОСТ 26318.1—84 при массовой доле оксида магния не более 2 %.

3.1. Аппаратура, реактивы, растворы

3.1.1. Для проведения анализа применяют:

фотоэлектроколориметр;

кислоту соляную по ГОСТ 3118-77, разбавленную 1:3;

натрия гидроокись по ГОСТ 4328—77 0,1 м раствор (концентрации 4 г/дм<sup>3</sup>) и раствор концентрации 200 г/дм<sup>3</sup>. Растворы хранят в полиэтиленовой посуде;

натрий фтористый по ГОСТ 4463—76; магиий сернокислый, стандарт-титр;

спирт поливиниловый по ГОСТ 10779—78, раствор концентрации 5 г/дм<sup>3</sup>, приготовленный растворением навески в воде при нагревании до кипения; раствор фильтруют каждый раз перед употреблением:

триэтаноламин;

маскирующий реагент (MP), приготовленный растворением в 300—400 см<sup>3</sup> воды 2,5 г фтористого натрия и 25 см<sup>3</sup> триэтаноламина и доведением раствора до 500 см<sup>3</sup>; феназо, раствор концентрации 0,005 г/дм<sup>3</sup>, приготовленный следующим образом: сначала 0,05 г феназо растворяют в 100 см<sup>3</sup> 0,1 м раствора гидроокиси натрия, перемешивают и разбавляют в 10 раз 0,1 м раствором гидроокиси натрия. Раствор устойчив один год при условии хранения его в полиэтиленовой посуде;

составной реагент, приготовленный смешиванием равных

объемов соляной кислоты 1:3, МР и поливинилового спирта.

(Измененная редакция, Изм. № 1, 2). 3.2. Подготовка к анализу

3.2.1. Приготовление раствора оксида магния

Основной раствор оксида магния готовят из стандарт-титра сернокислого магния. В 1 см<sup>3</sup> этого раствора содержится 2,015 мг оксида магния. Из этого раствора разбавлением в 100 раз водой готовят раствор с содержанием оксида магния 0,02 мг/см<sup>3</sup>.

3.2.2. Построение градуировочного графика

В мерные колбы вместимостью 50 см<sup>3</sup> отбирают аликвотные части раствора оксида магния с содержанием 0,02 мг/см<sup>3</sup>: 0; 0,5; 1,0; 2,0; 3,0; 4,0; 5,0 и 6,0 см<sup>3</sup>, что соответствует: 0; 0,01; 0,02; 0,04;

0,06; 0,08; 0,10 и 0,12 мг оксида магния

К растворам приливают по 5 см<sup>3</sup> раствора холостого опыта 3 по ГОСТ 26318.1—84, по 15 см<sup>3</sup> составного реагента, по 5 см<sup>3</sup> феназо и по 10 см<sup>3</sup> раствора едкого натра концентрации 200 г/дм<sup>3</sup>, доводят до метки водой и перемешивают. Через 10—15 мин измеряют оптическую плотность растворов, применяя оранжевый светофильтр (595 нм) и кюветы толщиной слоя 20 мм.

По данным оптических плотностей растворов и соответствующим им концентрациям оксида магния строят градуировочный график.

Каждый раз при определении содержания оксида магния сле-

дует строить новый график.

(Измененная редакция, Изм. № 1, 2).

3.3. Проведение анализа

В мерную колбу вместимостью 50 см<sup>3</sup> помещают 5 см<sup>3</sup> анализируемого раствора 3, в другую такую же колбу помещают 5 см<sup>3</sup> раствора холостого опыта 3. Затем в колбы вводят все реактивы как при построении градуировочного графика, доводят до метки водой и тщательно перемешивают. Оптическую плотность полученного анализируемого раствора измеряют относительно раствора холостого опыта.

По измеренной оптической плотности по градуировочному графику находят содержание оксида магния, мг.

(Измененная редакция, Изм. № 1).

3.4. Обработка результатов

 3.4.1. Массовую долю оксида магния (X) в процентах вычисляют по формуле

$$X = \frac{m_1 \cdot V \cdot 100}{m \cdot V_1 \cdot 1000}$$
,

где m<sub>1</sub> — масса оксида магния, найденная по градуировочному графику, мг;

 V — общий объем раствора пробы анализируемого материала, см³;

т - масса навески, г;

V<sub>1</sub> — объем аликвотной части раствора, взятый для проведения анализа, см<sup>3</sup>.

3.4.2. Допускаемое расхождение между результатами двух параллельных определений не должно превышать величины, приведенной в таблице.

При возникновении разногласий в оценке качества по величине массовой доли оксида магния определение проводят комплексонометрическим методом.

(Измененная редакция, Изм. № 2).

## информационные данные

 РАЗРАБОТАН И ВНЕСЕН Министерством промышленности строительных материалов СССР

# РАЗРАБОТЧИКИ

Н. М. Золотухина, В. М. Горохова, Е. А. Пыркин, О. Н. Феодосьева, Э. И. Лопатина

- УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 31.10.84 № 3810
- 3. B3AMEH FOCT 20543.5-75 x FOCT 14328.4-77
- 4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

| Обозначение НТД, на который дана ссылка | Номер пункта       |  |
|-----------------------------------------|--------------------|--|
| ГОСТ 3118—77                            | 2.1.1; 3.1.1       |  |
| FOCT 3760-79                            | 2.1.1              |  |
| FOCT 3773-72                            | 2.1.1              |  |
| ΓOCT 4233-77                            | 2.1.1              |  |
| ΓOCT 423477                             | 2.1.1              |  |
| ΓOCT 432877                             | 3.1.1              |  |
| FOCT 4463-76                            | 3.1.1              |  |
| ΓOCT 5833-75                            | 2.1.1              |  |
| FOCT 5962-67                            | 2.1.1              |  |
| FOCT 10652-73                           | 2.1.1              |  |
| FOCT 10779-78                           | 3.1.1              |  |
| ГОСТ 24363—80                           | 2.1.1              |  |
| ΓOCT 26318.0-84                         | 1.1                |  |
| TOCT 26318.1-64                         | 2.2.1; 3; 3.2.2; 3 |  |

- Срок действия продлен до 01.01.96 г. Постановлением Госстандарта СССР от 24.12.90 № 3242
- Переиздание (май 1991 г.) с Изменениями № 1, 2, утвержденными в октябре 1988 г., октябре 1990 г. (ИУС 1—87, 4—91)