

## ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

# ГОСУДАРСТВЕННАЯ СИСТЕМА ОБЕСПЕЧЕНИЯ ЕДИНСТВА ИЗМЕРЕНИЙ

ГОСУДАРСТВЕННЫЙ СПЕЦИАЛЬНЫЙ ЭТАЛОН И ГОСУДАРСТВЕННАЯ ПОВЕРОЧНАЯ СХЕМА ДЛЯ СРЕДСТВ ИЗМЕРЕНИЙ БИКОМПЛЕКСНОЙ ПРОНИЦАЕМОСТИ И МОДУЛЯ КОЭФФИЦИЕНТА ОТРАЖЕНИЯ В ДИАПАЗОНЕ ЧАСТОТ 0,2—1,0 ГГц

**FOCT 8.274-85** 



Издание официальное

Цена 5 коп.

ГОСУДАРСТВЕННЫЙ КОМИТЕТ СССР ПО СТАНДАРТАМ
МОСКВА

# РАЗРАБОТАН Государственным комитетом СССР **п**о стандартам ИСПОЛНИТЕЛИ

Н. Л. Яцынина, канд. техн. наук (руководитель темы); Г. А. Ведюшкин, канд. техн. наук; Н. М. Карих, канд. техн. наук; Н. А. Никулина; Н. А. Щеткин

# ВНЕСЕН Государственным комитетом СССР по стандартам

Член Госстандарта Л. К. Исаев

УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 17 октября 1985 г. № 118

#### СОЮЗА ССР CTAHAAPT ГОСУДАРСТВЕННЫ Ж

Государственная система обеспечения единства измерений

ГОСУДАРСТВЕННЫЙ СПЕЦИАЛЬНЫЙ ЭТАЛОН И ГОСУДАРСТВЕННАЯ ПОВЕРОЧНАЯ СХЕМА ДЛЯ СРЕДСТВ ИЗМЕРЕНИЙ БИКОМПЛЕКСНОЙ ПРОНИЦАЕМОСТИ И МОДУЛЯ КОЭФФИЦИЕНТА ОТРАЖЕНИЯ В ДИАПАЗОНЕ ЧАСТОТ 0,2 + 1,0 ГГЦ

**FOCT** 8.274-85

State system for ensuring the uniformity of measurements. State special standard and state verification schedule for means measuring complex permittivity and complex permeability as well as reflection factor modulus at Irequencies of 0.2 to 1 GHz

Взамен **FOCT 8.274-78** 

ОКСТУ 0008

Постановлением Государственного комитета СССР по стандартам от 17 октября 1985 г. № 118 срок введения установлен

c 01.01.87

на государственный Настоящий стандарт распроспраняется специальный эталон и государственную поверочную схему средств измерений бикомплексной проницаемости и модуля коэффициента отражения в диапазоне частот 0,2÷1,0 ГГц и устанавливает назначение государственного специального эталона единиц бикомплексной проницаемости — относительных единиц в диапазоне частот 0,2÷1,0 ГГц, комплекс основных средств измерений, входящих в его состав, основные метрологические характеристики эталона и порядок передачи размера единиц бикомплексной проницаемости от государственного специального эталона при помощи вторичных эталонов и образцовых средств, измерений бикомплексной проницаемости и модуля коэффициента отражения рабочим средствам измерений с указанием погрешностей и основных методов поверки.

### 1. STAROHER

1.1. Государственный специальный эталон

1.1.1. Государственный специальный эталон предназначен для воспроизведения и хранения единиц бикомплексной проницаемости в диапазоне частот 0,2÷1,0 ГГц и передачи размера единиц при помощи вторичных эталонов и образцовых средств измерений рабочим средствам измерений, применяемым в народном хозяйстве с целью обеспечения единства измерений в стране.

1.1.2. В основу измерений бикомплексной проницаемости и модуля коэффициента отражения в диапазоне частот 0,2÷1,0 ГГц должны быть положены единицы, воспроизводимые указанным

эталоном.

1.1.3. Государственный специальный эталон состоит из комплекса следующих средств измерений:

комплект эталонных двухполюсников;

комплект эталонных четырехполюсников;

компаратор для воспроизведения единий бикомплексной проницаемости и передачи их размеров вторичным эталонам и образцовым средствам измерений 1-го разряда.

1.1.4. Диапазон значений относительных единиц бикомплексной проницаемости, воспроизводимых эталоном, составляет  $1 \div 10$  для действительных частей (диэлектрической  $\varepsilon'$  и магнитной  $\mu'$ ),  $1 \cdot 10^{-4}$   $\div 1$  для мнимых частей (диэлектрической  $\varepsilon''$  и магнитной  $\mu''$ ).

1.1.5. Государственный специальный эталон обеспечивает воспроизведение единиц со средним квадратическим отклонением результата измерений  $S_0$ , не превышающим  $1 \cdot 10^{-4}$  для действительных частей,  $2 \cdot 10^{-2} \div 1 \cdot 10^{-1}$  — для мнимых частей при десяти независимых наблюдениях. Неисключенная систематическая погрешность  $\Theta_0$  не превышает  $2 \cdot 10^{-4}$  для действительных частей,  $5 \cdot 10^{-2} \div 2 \cdot 10^{-1}$  — для мнимых частей.

Нестабильность эталона за год  $v_0$  составляет  $0.7 \cdot 10^{-4}$  для действительных частей и  $0.01 \div 0.05$  для мнимых частей бикомплексной

проницаемости.

- 1.1.6. Для обеспечения воспроизведения единиц бикомплексной проницаемости с указанной точностью должны быть соблюдены правила хранения и применения эталона, утвержденные в установленном порядке.
- 1.1.7. Государственный специальный эталон применяют для передачи размера единиц бикомплексной проницаемости вторичным эталонам и образцовым средствам измерений 1-го разряда непосредственным сличением, методом прямых измерений и методом косвенных измерений.

1.2. Вторичные эталоны

1.2.1. В качестве эталона сравнения единиц бикомплексной про-

диапазоне измерений  $1\div 10$  для относительных диэлектрической имагнитной проницаемостей и  $1\cdot 10^{-4}\div 1$  для тангенсов углов потерь-

 $(tg \delta).$ 

1.2.2 Средние квадратические отклонения результатов сличения эталона сравнения с государственным не должны превышать:  $S_{\Sigma0\epsilon\mu} - 3\cdot10^{-4}$  для диэлектрической и магнитной проницаемостей и  $S_{\Sigma0tg\delta}$  — от  $5\cdot10^{-2}$  до  $3\cdot10^{-1}$  для тангенса угла потерь.

1.2.3. Эталон сравнения применяют для международных сли-

чений.

1.2.4. В качестве рабочих эталонов единиц комплексных ди-

электрической и магнитной проницаемостей применяют:

рабочий эталон единиц комплексной диэлектрической проницаемости диэлектриков малых объемов толщиной не более 2 мм в диапазоне частот 0,2÷1,0 ГГц и в диапазоне измеряемых величин в' 1÷10 для диэлектрической проницаемости и 1·10<sup>4</sup>÷1·10<sup>-1</sup> длятангенса угла диэлектрических потерь, содержащий комплект эталонных образцов и компаратор для передачи размера единиц от рабочего эталона образцовым средствам измерений 1-го разряда;

рабочие эталоны единиц бикомплексной проницаемости в диапазонах частот  $0.2 \div 1.0$  ГГц и  $1 \div 7$  ГГц и в диапазоне измеряемых величин  $1 \div 10$  для диэлектрической и магнитной проницаемостей и:  $1 \cdot 10^{-4} \div 1$  для тангенсов углов потерь, содержащий комплект эталонных четырехполюсников, компаратор для передачи размера единиц бикомплеконой проницаемости образцовым средствам измерений 2-го разряда;

рабочий эталон комплексной диэлектрической проницаемости в диапазоне частот 0,5÷3,0 ГГц и в диапазоне измерений 10÷1000 для диэлектрической проницаемости и 5·10<sup>-3</sup>÷1 для тангенса угладиэлектрических потерь, содержащий эталонный образец и компаратор для передачи размера единиц комплексной диэлектрической проницаемости образцовым средствам измерений 1-го разряда:

рабочий эталон единицы модуля коэффициента отражения в диапазоне частот  $1\div 3$  ГГц и в диапазоне измерений  $1\cdot 10^{-2}\div 3,5\cdot 10^{-1}$  ( $|\rho|_E$ ) модуля коэффициента отражения по напряженности электрического поля, полученного расчетным путем от воспроизведенной государственным специальным эталоном единицы диэлектрической проницаемости, содержащий комплект эталонных образцов и компаратор для передачи размера единицы модуля коэффициента отражения образцовым средствам измерений 2-го разряда.

1.2.5. Средние квадратические отклонения  $S_{\Sigma 0}$  результатов

сличений рабочих эталонов с государственным составляют:

 $S_{\Sigma0\epsilon}$  от  $1\cdot10^{-3}$  до  $1\cdot10^{-2}$  по диэлектрической проницаемости в  $S_{\Sigma0\epsilon\delta}$  от  $4\cdot10^{-2}$  до  $2\cdot10^{-1}$  по тангенсу угла диэлектрических потерь для рабочего эталона комплексной диэлектрической проницаемости диэлектриков малых объемов;

 $S_{\Sigma0e\mu}$  от  $1\cdot10^{-3}$  до  $5\cdot10^{-3}$  по диэлектрической и магнитной проницаемостям и  $S_{\Sigma0tg0}$  от  $5\cdot10^{-2}$  до  $15\cdot10^{-2}$  по тангенсу угла потерь для рабочих эталонов единиц бикомплексной проницаемости;

 $S_{\Sigma 0}$ : от  $5 \cdot 10^{-3}$  до  $1 \cdot 10^{-2}$  по диэлектрической проницаемости и  $S_{\Sigma 0 \cdot 1g6}$  от  $3 \cdot 10^{-2}$  до  $7 \cdot 10^{-2}$  по тангенсу угла диэлектрических потерь для рабочего эталона единиц комплексной диэлектрической проницаемости;

 $S_{\Sigma 0}$ , от  $3 \cdot 10^{-3}$  до  $1 \cdot 10^{-1}$  для модуля коэффициента отражения для рабочего эталона единицы модуля коэффициента отражения.

1.2.6. Рабочие эталоны применяют для передачи размера единиц образцовым средствам измерений 1 и 2-го разрядов методом прямых измерений.

### 2. ОБРАЗЦОВЫЕ СРЕДСТВА ИЗМЕРЕНИЙ

- 2.1. Образцовые средства измерений 1-го разряда
- 2.1.1. В качестве образцовых средств измерений 1-го разряда применяют:

образцовую установку для измерений параметров диэлектриков малых объемов в диапазоне частот  $0.2 \div 1.0$  ГГц и в диапазоне измерений  $1 \div 20$  для диэлектрической проницаемости и  $1 \cdot 10^{-4} \div 1 \cdot 10^{-1}$  для тангенса угла диэлектрических потерь;

стандартные образцы диэлектрической проницаемости в диапазоне измерений  $1 \div 10$  для диэлектрической проницаемости;

образцовую установку для измерений комплексной диэлектрической проницаемости в диапазоне частот 0,5÷3,0 ГГц при температурах от минус 50 до плюс 200°С и управляющих напряжениях от 0 до 1000 В в интервалах измерений 10÷1000 для диэлектрической проницаемости, 5·10<sup>-3</sup>÷1 для тангенса угла диэлектрических потерь

- 2.1.2. Доверительные относительные погрешности образцовых средств измерений 1-го разряда при доверительной вероятности 0,95 составляют:
- δ<sub>9ε</sub> от 0,5 до 2,0 % по диэлектрической проницаемости и  $δ_{otg6}$  от 7 до 30 % по тангенсу угла диэлектрических потерь образцовой установки для измерений параметров диэлектриков малых объемов.
- δ₀ ε 0,3 % по диэлектрической проницаемости для стандартных образцов диэлектрической проницаемости;
- δ₀ 2 % по диэлектрической проницаемости и δ₀tg 10 % по тангенсу угла диэлектрических потерь образцовой установки для измерения комплексной диэлектрической проницаемости.
- 2.1.3. Образцовые средства измерений 1-го разряда применятот для передачи размера единиц стандартным образцам 2-го раз-

ряда и рабочим средствам измерений методом прямых измерений и сличением при помощи компаратора.

2.2. Образцовые средства измерений 2-го раз-

ряда

2.2.1. В качестве образцовых средств измерений 2-го разряда применяют:

стандартные образцы комплексной диэлектрической проницаемости диэлектриков малых объемов в диапазоне частот  $0.2 \div 1.0^{-1}$  ГГц и в диапазоне измерений  $1 \div 20$  для диэлектрической проницаемости и  $1 \cdot 10^{-4} \div 1 \cdot 10^{-1}$  для тангенса угла диэлектрических потерь;

стандартные образцы бикомплексной проницаемости в диапазоне частот  $0.2 \div 1.0$  ГГц и  $1 \div 7$  ГГц и в диапазоне измерений  $1 \div 20$  для диэлектрической и магнитной проницаемостей и  $1 \cdot 10^{-4} \div 1 \cdot 10^{-1}$  для тангенсов углов потерь;

стандартные образцы диэлектрической проницаемости в диапазоне частот  $0.2 \div 1.0$  ГГц и в диапазоне измерений  $1 \div 10$  для диэлектрической проницаемости;

стандартные образцы комплексной диэлектрической проницаемости в диапазоне частот  $0.5 \div 3.0$  ГГц в диапазоне измерений  $10 \div 4000$  для диэлектрической проницаемости и  $5 \cdot 10^{-3} \div 1$  для тангенса угла диэлектрических потерь;

стандартные образцы температурно-реверсивной комплексной диэлектрической проницаемости в диапазоне измерений 200÷2000 для диэлектрической проницаемости и 5·10<sup>-3</sup>÷1 для тангенса угла диэлектрических потерь;

стандартные образцы модуля коэффициента отражения в диапазоне частот  $1 \div 3$  ГГц с интервалом измерений  $1,0 \cdot 10^{-2} \div 3,5 \cdot 10^{-1}$  для модуля коэффициента отражения по напряженности электрического поля.

2.2.2. Доверительные относительные погрешности образцовых средств измерений 2-го разряда при доверительной вероятности 0,95 составляют:

от 1 до 3 % по диэлектрической проницаемости и о отдо от 10 до 60 % по тангенсу угла диэлектрических потерь для стандартных образцов комплексной диэлектрической проницаемости диэлектриков малых объемов;

 $\delta_{0e\mu}$  от 0,3 до 1,0 % по диэлектрической и магнитной проницаемостям и  $\delta_{0rg\delta}$  от 10 до 30 % по тангенсам углов потерь для стандартных образцов бикомплексной проницаемости;

бо 1 % по диэлектрической проницаемости для стандартных

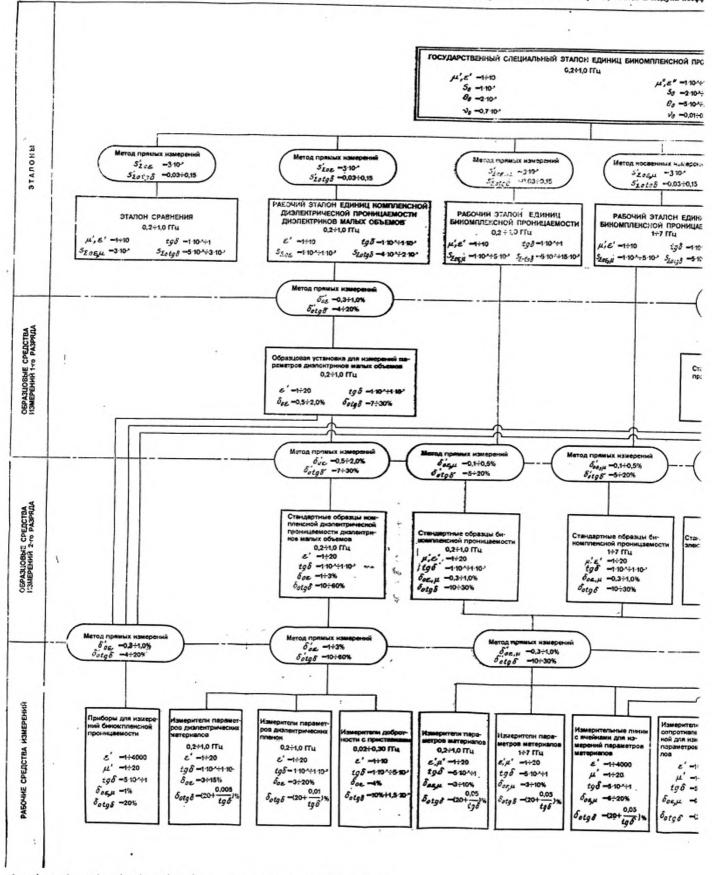
образцов диэлектрической проницаемости:

б₀₂ от 3 до 6 % по диэлектрической проницаемости и боще от 12 % по тангенсу угла диэлектрических потерь для стандартных образцов комплексной диэлектрической проницаемости;

δ₀е от 4 до 6 % по диэлектрической проницаемости и δ₀₁gҫ 15 % по тангенсу угла диэлектрических потерь для стандартных образцов температурно-реверсивной комплексной диэлектрической проницаемости;

-бо, от 10 до 20 % по модулю коэффициента отражения для

стандартных образцов модуля коэффициента отражения.


2.2.3. Образцовые средства измерений 2-го разряда предназначены для поверки рабочих средств измерений методом прямых измерений.

### 3. РАБОЧИЕ СРЕДСТВА ИЗМЕРЕНИЙ

- 3.1. В качестве рабочих средств измерений применяют измерители параметров диэлектрических материалов, измерители параметров диэлектрических пленок, измерители добротности с приставками, измерители параметров материалов, измерительные линии с ячейками для измерений параметров материалов, измерители полных сопротивлений с ячейками для измерений параметров материалов, измерители комплексных коэффициентов передачи с ячейкой для измерений параметров материалов, панорамные измерители коэффициента стоячей волны с ячейкой для измерений параметров материалов, измерители параметров высоких значений комплексной диэлектрической проницаемости, полосковые компенсационные измерители, рупорные измерители.
- 3.2. Относительные доверительные погрешности рабочих средств измерений при доверительной вероятности 0,95 составляют от 3 до 15 % для диэлектрической проницаемости, от 5 до 15 % для магычтной проницаемости, (10+0,05/tgδ) % для тангенсов углов потерь и 20÷40 % для модуля коэффициента отражения по напряженности электрического поля.

Редактор М. А. Глазунова
Технический редактор М. И. Максимова
Корректор Н. Д. Чехотина

Сдано в наб. 27.11.86 Подп. в печ. 23.01,86 0,5 усл. п. л. + вкл. 0.5 усл. п. л. 1,0 усл. кр.-отт. 0.42 + 0.44 вкл. уч.-нэд. л. Тир. 12000 Цена 5 коп.



 $S_{20e}^*;\ S_{20tg4}^*;\ S_{20e\mu}^*;\ S_{0e}^*;\ \delta_{0e}^*;\ \delta_{0e\mu}^*;\ \delta_{0e\mu}^*;\ \delta_{0e}^* -$  погрешности метода передачи размера единиц

€ -1+4000

µ' −1÷20

tg6 -510-1

GOGH -6+20%

Sotg 5 -(20+ 0,05

€' -1÷4000

tg8-51041

δος -6+20%

Sotg8 -(20+ 0,05

tg 8 -5 10 +1

Soc -6-20%

Sotg 8 -20:30%

O op = 20:40%

Sop = 20+40%

ε'μ' -1+20 29δ -510+1

AEM -3410%

otge -(20+ 176

tgδ -6-10\*+1 δορμ -3+10%

Satg 8 -(20+0,05)

& -1+4000

tg6-5-10-+1

μ' -1+20

tgδ -5:10-41

Socie -6+20%

δο tg 6 -(20+ 0,05

μ' -1÷20

Sosµ -6:20%

δotg 8 -(20+ 0,05)