

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗАССР

ВИБРАЦИЯ

АППАРАТУРА ПЕРЕНОСНАЯ БАЛАНСИРОВОЧНАЯ

ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

FOCT 26875-86

Издание официальное

РАЗРАБОТАН Министерством энергетики и электрификации СССР ИСПОЛНИТЕЛИ

Б. Т. Рунов, д-р техн. наук; В. И. Петрович, канд. техн. наук (руководители темы); Л. Б. Месрович

ВНЕСЕН Министерством энергетики и электрификации СССР

Зам. министра Г. А. Шашарин

УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 21 апреля 1986 г. № 1017

ГОСУДАРСТВЕННЫЙ СТАНДАРТ СОЮЗА ССР

Вибрация

АППАРАТУРА ПЕРЕНОСНАЯ БАЛАНСИРОВОЧНАЯ Технические требования

Vibration. Portable balancing equipment Technical requirements ГОСТ 26875—86

OKII 42 7724

Постановлением Государственного комитета СССР по стандартам от 21 апреля 1986 г. № 1017 срок действия установлен

до 01.01.92

Несоблюдение стандарта преследуется по закону

Настоящий стандарт распространяется на переносную аппаратуру для динамической балансировки на месте (далее — аппаратуру) валопроводов крупных паротурбинных агрегатов (далее — турбоагрегатов) тепловых и атомных электростанций мощностью 200 МВт и выше при частотах вращения от 10 до 55 с⁻¹.

Стандарт полностью соответствует международному стандарту ИСО 2371—80.

1. ОБЩИЕ ТРЕБОВАНИЯ

1.1. Аппаратура для балансировки должна обеспечивать проведение исследований с целью определения вибрационного состояния турбоагрегата, выявление дисбаланса его валопровода и получение экспериментальных данных для расчетного определения значения и положения масс, компенсирующих дисбаланс в выбранных плоскостях коррекции.

1.2. Аппаратура для балансировки должна обеспечивать измерение амплитуды и сдвига фазы первой гармоники поперечных относительно оси валопровода (вертикальных и горизонтальных) компонентов колебаний (виброперемещений, виброскоростей) всех опор подшипников балансируемого турбоагрегата, а также амплитуд гармонических составляющих вибрации. Кроме того, аппаратура должна обеспечивать измерение среднего квадратического значения вертикальных, поперечных и осевых компонентов вибро-

скорости всех опор подшилников турбоагрегата в соответствии с ГОСТ 25364-82, а также частоту вращения балансируемого валопровода.

Измерительные приборы должны соответствовать требова-

ниям ГОСТ 25865-83.

2. ТРЕБОВАНИЯ К КОНСТРУКЦИИ

2.1. Аппаратуру следует изготовлять в соответствии с требованиями настоящего стандарта по рабочим чертежам, утвержденным в установленном порядке.

2.2. Аппаратура должна иметь блочную конструкцию, позволяющую оперативно составлять требующуюся измерительную

систему для каждого конкретного случая балансировки.

2.3. Аппаратуру следует выполнять в виде автономной системы или приставки, использующей вибродатчики и усилительные блоки штатной стационарной аппаратуры для эксплуатационного контроля вибрации паротурбинных агрегатов по ГОСТ 25364—82.

2.4. Каждый канал аппаратуры совместно с датчиком и соединительным кабелем должен быть оснащен устройством сквозного контроля работоспособности и сигнализации повреждения съема его с объекта измерения.

2.5. По условиям климатических воздействий аппаратуру (за исключением вибродатчиков и датчиков импульсов) следует вы-

пускать в соответствии с ГОСТ 22261-82, группа 3.

2.6. По условиям вибрационных воздействий аппаратура (за исключением вибродатчиков и датчиков импульсов) должна вы-пускаться в исполнении 3 по ГОСТ 12997—84.

3. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

- Днапазон измерений размахов виброперемещений первой гармоники колебаний 0,1—1000 мкм (поддиапазоны 0,1—100 и 1-1000) с пределами измерений по цифровому индикатору 199 и 1999.
- 3.2. Диапазон измерений средних квадратических значений виброскоростей 0,1—100 мм·с-¹ (поддивпазоны 0,1—10 и 1—100) с пределами измерений по цифровому индикатору 19,9 и 199.

3.3. Частотный диапазон измерений гармонических составляю-

щих размахов виброперемещений 10-300 Гц.

3.4. Частотный диапазон измерений средних квадратических значений виброскоростей 10—1000 Гц.
3.5. Диапазон измерения угловой скорости вращения турбины

300-3600 об/мин.

Диапазон измерения сдвига фазы вибрации при угловой скорости вращения 900—3600 об/мин 0°—360°.

3.7. Основную погрешность измерений размаха виброперемещения оборотной составляющей (первой гармоники) и среднего квадратического значения виброскорости следует нормировать в виде приведенной погрешности или суммы аддитивной и мультипликативной составляющих.

 З.8. Предел допустимой основной приведенной погрешности на базовой частоте не должен превышать ±5% и в рабочем диапа-

зоне частот ±10%.

Относительную погрешность на базовой частоте в процентах следует вычислять по формуле

$$\pm 5 \left[1+0,1\left(\frac{X_{np}}{X}-1\right)\right]$$

и в рабочем диапазоне частот

$$\pm 10 \left[1 + 0.1 \left(\frac{X_{np}}{X} - 1 \right) \right],$$

где $X_{\rm пр},~X$ — соответственно предельное и текущее значения шкалы понбора.

3.9. Предел допустимой абсолютной погрешности измерения

частоты вибрации не более $\pm (f/10^4+0.1)$ Гц.

 Предел допустимой абсолютной погрешности измерения частоты вращения валопровода не более ± (n/3000+1) об/мин.

 Погрешность измерения сдвига фазы вибрации на фиксированной частоте в диапазоне 900—3600 об/мин не более ±2°.

3.12. Питание аппаратуры от сети переменного тока напряже-

нием (220±22) В при частоте (50±1,0) Гц.

Дополнительная погрешность от изменения напряжения питания при измерении значений вибрации, ее сдвига фазы и частоты не должна превышать половины основной погрешности.

З.13. Время готовности аппаратуры после включения в сеть —

не более чем через 10 мин.

4. TPESOBAHUS BESONACHOCTH

4.1. Требования безопасности -- по ГОСТ 12.4.012-83.

комплектность

5.1. Аппаратура должна включать комплект датчиков вибрации и опорного сигнала, предусилители (при использовании пьезодатчиков) и вторичные приборы, включающие измерительный блок и коммутаторы. Кроме того, в комплект аппаратуры должны входить цифропечатающие устройства, магнитографы, двухкоординатные самописцы и интерфейсы.

6. ТРЕБОВАНИЯ К ДАТЧИКАМ

6.1. Вибродатчик должен быть сейсмического типа и его конструкция должна обеспечить измерение вертикальных или горизонтальных компонентов вибрации подшипника путем крепления вибродатчика к верхней крышке подшипника — при измерении вертикальной вибрации, и в плоскости горизонтального разъема турбины — при измерении поперечной и осевой вибраций (в соответствии с ГОСТ 25364—82).

Использование вибродатчиков в виде щупа без крепления к

объекту измерения при балансировке не допускается.

6.2. Вибродатчики совместно с измерительным блоком аппаратуры в указанном выше рабочем диапазоне должны обеспечивать пропорциональные амплитудные и плоские частотные характеристики в соответствии с ГОСТ 25275—82.

6.3. Относительный коэффициент поперечного преобразования вибродатчиков в диапазоне частот 10—1000 Гц не должен превышать 5%.

При этом вибродатчики должны выдерживать пиковые значе-

ния ускорения в поперечном направлении до 60 м·с-2.

6.4. Вибродатчик должен нормально работать при температуре окружающей среды от 5 до 100° С. Дополнительная погрешность от изменения температуры окружающего воздуха не должна превышать 1%/10° С.

- 6.5. Вибродатчик должен нормально работать при воздействии на него окружающего электромагнитного поля до 400 А м⁻¹. Максимальная погрешность от влияния электромагнитного поля в указанном диапазоне не должна превышать ±2,5%.
- 6.6. Вибродатчик должен иметь герметичную конструкцию, быть нечувствительным к воздействию влажности (до 98%), защищенным от паров турбинного масла и жидкости ОМТИ.
- 6.7. Вибродатчик должен выдерживать воздействие на него в направлении измерения вибрационного ускорения до 60 м·с⁻².
- 6.8. Вибродатчик следует присоединять к кабелю при помощи надежного разъемного соединения, обеспечивающего возможность сиятия датчика без демонтажа кабеля; длина кабеля между датчиком и предусилителем (при использовании пьезодатчика) должна быть не менее 5 м.
- 6.9. Вибродатчики должны быть взаимозаменяемыми в пределах основной погрешности измерения. Коэффициенты преобразования вибродатчиков, входящих в комплект аппаратуры, должны отличаться не более чем на ±2%.

Примечание. При использовании в аппаратуре пьезодатчиков под взаимозаменяемостью последних подразумевается возможность замены датчика вместе со связанным с инм предусилителем. 6.10. Аппаратура должна иметь два вида бесконтактных датчиков опорного сигнала — фотоэлектрический датчик и электромагнитный (индуктивный или токовихревой). Амплитуды импульсов датчиков опорного сигнала на частоте 50 Гц должны быть не менее 0,2 В с длительностью переднего фронта не более 50 мкс на частоте 50 с⁻¹.

7. ТРЕБОВАНИЯ К ИЗМЕРИТЕЛЬНОМУ БЛОКУ

7.1. Измерительный блок должен быть одноканальным с возможностью подключения сигнала вибродатчика одного из трех компонентов вибрации каждого подшипника балансируемого тур-

боагрегата.

7.2. Измерительный блок должен иметь цифровую индикацию измеряемых величин: амплитуды и сдвига фазы компонентов первой гармоники виброперемещения, частоты колебаний или частоты вращения валопровода и среднего квадратического значения виброскорости.

Примечание, Измеритель среднего квадратического значения виброско-

рости может быть выполнеи в виде отдельного блока.

7.3. Измерительный блок должен иметь анализатор спектра

последовательного действия.

7.4. Измерительный блок должен иметь входные устройства для присоединения коммутаторов, обеспечивающих последовательное подключение к нему всех входящих в комплект аппарату-

ры вибродатчиков.

7.5. Для обеспечения возможности параллельного подключения анализаторов, аналогоцифровых преобразователей, запоминающих устройств, ЭВМ и других приборов измерительный блок должен иметь выходы по переменному току, передающие сигналы от вибродатчиков без фазочастотных и амплитудо-частотных искажений.

 7.6. Измерительный блок должен иметь логические выходы для подключения внешних цифропечатающих устройств с уровнями

при токе нагрузки до 2 мА.

Логический ноль — —0,1 — +0,3В. Логическая единица - 2,4—5,0 В.

Все выходы должны быть выполнены в двоично-десятичном прямом коде 1—2—4 8.

Число разрядов выходов на цифропечатающее устройство:

4 тетрады — амплитудные значения виброперемещения или виброскорости;

4 тетрады — средние квадратические значения виброскорости;

3 тетрады — сдвиг фазы;

4 тетрады — частота вращения;

тетрада — номер вибродатчика;

1 тетрада — режим работы;

разряд — команда на печать.

7.7. Измерительный блок должен иметь нормализованные выходы по постоянному току с уровнями (0—10) В ±0.1 на сопротивление нагрузки 2 кОм или (0—5) мА ±0.05 при сопротивлении

нагрузки не менее 2 кОм.

7.8. При использовании выносных согласующих усилителей и выносных генераторов последние следует располагать вблизи подшипников турбоагрегатов на расстоянии не менее 5 м и нормально работать при температуре окружающей среды от 5 до 70° С и относительной влажности до 98%.

 7.9. Конструкцией аппаратуры должна быть обеспечена нормальная эксплуатация измерительного и других блоков на рассто-

янии до 200 м от вибродатчиков.

8. ТРЕБОВАНИЯ К КОММУТАТОРУ

8.1. В комплект аппаратуры должны входить три коммутатора, обеспечивающих последовательное присоединение к измерительному блоку всех вибродатчиков (до 16 вибродатчиков на 1 коммутатор).

8.2. Коммутаторы вибродатчиков должны обеспечивать их под-

ключение ручным способом и автоматически по команде от:

измерительного блока; встроенного генератора;

встроенного тенератора, внешнего таймлера;

цифропечатающего устройства.

8.3. Коммутаторы должны иметь цифровую индикацию номера

подключенного вибродатчика.

8.4. При работе коммутатора с цифропечатающим устройством номер подключенного вибродатчика передается в двоично-десятичном коле 1—2—4—8.

8.5. За один цикл следует обеспечивать параллельную печать номера режима, номера вибродатчика, амплитудных и фазовых значений основной гармоники или виброскорости, частоты вращения валопровода. Время между двумя циклами печати не более 1 с при непрерывном режиме работы.

8.6. Коммутаторы должны иметь выходы 0—10 В или 0—5 мА при сопротивлении нагрузки 2 кОм для подключения ко всем вибродатчикам многоканальных магнитографов двухкоординатных самописцев и других регистрирующих и запоминающих устройств.

9, ТРЕБОВАНИЯ К АНАЛИЗАТОРУ СПЕКТРА ПОСЛЕДОВАТЕЛЬНОГО . ДЕЙСТВИЯ

9.1. Анализатор должен обеспечивать проведение спектрального анализа вибрации по размаху колебаний в диапазоне частот

10—300 Гц и по среднему квадратическому значению виброско-рости в диапазоне частот 10—1000 Гц при ширине полосы пропу-

скания не более 0,02 f, где f — текущее значение частоты.

9.2. Анализатор должен обеспечивать автоматические режимы работы с двумя скоростями анализа: обзорный режим, обеспечивающий проход рабочего диапазона частот за 30 с, и режим изме-рений со скоростью изменения частоты 20 Гц за 1 мин при погрешности измерения амплитудных значений гармонических со-ставляющих не более ±5% или со скоростью изменения частоты 50 Гц за 1 мин при погрешности не более ±10%.

9.3. Анализатор должен обеспечивать ручную частоту составляющей спектра вибрации, а также работу в авто-

матическом режиме.

9.4. Анализатор должен иметь связь с выходами измерительного блока на цифропечатающее устройство, двухкоординатный самописец и ЭВМ.

10. ТРЕБОВАНИЯ К НАДЕЖНОСТИ

- 10.1. Установленная безотказная наработка не менее 100 ч.
- Срок службы аппаратуры не менее 6 лет.
- 10.3. Аппаратура должна быть ремонтнопригодной.

11. ТРЕБОВАНИЯ К ХРАНЕНИЮ

Требования к хранению — по ГОСТ 22261—82, группа 2.

12. ТРЕБОВАНИЯ К ТРАНСПОРТИРОВАНИЮ

12.1: Аппаратура должна сохранять свои характеристики в пределах норм, установленных настоящими техническими требованиями после пребывания в предельных климатических условиях транспортирования (температура окружающей среды от минус 50 до плюс 50° C, влажность до 98% при температуре 25° C) и последующего пребывания в нормальных условиях.

Редактор В. С. Бабкина Технический редактор В. Н. Прусакова Корректор В. С. Черная

Спано в наб. 19.05.96 Подп. в печ. 21.07.85 0.75 усл. п. л. 0.75 усл. кр. отт. 0.47 уч.-изд. л. Тир. 16 000

Ордена «Знак Почета» Издательство стандартов, 123840. Москва, ГСП, Новопресненский пер., 3 Тип. «Московский печатник». Москва, Лядин пер., 6. Зак. 2218