ГОСУДАРСТВЕННЫЯ СТАНДАРТ СОЮЗА ССР

СТАЛЬ УГЛЕРОДИСТАЯ И ЧУГУН НЕЛЕГИРОВАННЫЯ

Методы определения фосфора

Carbon steel and unalloyed cast iron. Methods for determination of phosphorus FOCT 22536.3—88 (CT C9B 485—75)

OKCTY 0809

Срок действия с 01.01.90 до 01.07.95

Несоблюдение стандарта преследуется по закону

Настоящий стандарт устанавливает фотометрический (при массовой доле фосфора 0,005—0,25 %), титриметрический (при массовой доле фосфора 0,02—2,5 %) и гравиметрический (при массовой доле 0,01—2 %) методы определения фосфора в углеродистой стали и нелегированном чугуне.

1. ОБЩИЕ ТРЕБОВАНИЯ

1.1. Общие требования к методам анализа — по ГОСТ

22536.0-87.

1.2. Погрешность результата анализа (при доверительной вероятности 0,95) не превышает предела ∆, приведенного в табл. 1, при выполнении условий:

расхождение результатов двух (трех) параллельных измерений не должно превышать (при доверительной вероятности P = 0,95)

значения d_2 (d_3), приведенного в табл. 1;

воспроизведенное в стандартном образце значение массовой доли фосфора не должно отличаться от аттестованного более чем на допускаемое (при доверительной вероятности P = 0.85) эначе-

ние в, приведенное в табл. 1.

При невыполнении одного из вышеуказанных условий проводят повторные измерения массовой доли фосфора. Если и при повторных измерениях требования к точности результатов не выполняются, результаты анализа признают неверными, измерения прекращают до выявления и устранения причин, вызвавших нарушение нормального хода анализа.

Издание официальное

*

Перепечатка воспрещена

C. 2 FOCT 22536.3—88

Расхождение двух средних результатов анализа, выполненных в различных условиях (например, при внутрилабораторном контроле воспроизводимости), не должно превышать (при доверительной вероятности 0.95) значения d_{κ} , приведенного в табл. 1.

Таблица 1

Массовая доля фосфора, %	Δ, %	Допускаемые расхождения, ж			
		d,	4.	d _K	δ, %
От 0,005 до 0,010 включ.	0,0018	0,0018	0,0020	0,0020	0,0010
Св. 0,010 » 0,02 »	0,0024	0,0025	0,0030	0,0030	0,0015
» 0,02 » 0,05 »	0,004	0,004	0,005	0,005	0,003
» 0,05 » 0,10 »	0,006	0,006	0,007	0,007	0,004
» 0,10 » 0,20 »	0,009	0,009	0,011	0,011	0,006
> 0,20 > 0,5 > 0,5 > 0,5 > 1,0 > 2,5 >	0,013	0,014	0,017	0,017	0,009
	0,03	0,03	0,04	0,04	0,02
	0,04	0,04	0,05	0,05	0,03

2. ФОТОМЕТРИЧЕСКИЯ МЕТОД

2.1. Сущность метода

Метод основан на реакции образования желтой фосфорномолибденовой гетеропокислоты $H_3[P(Mo_{12}O_{40})] \cdot n H_2O$, восстановлении ее до синего комплексного соединения ионами двухвалентного железа в присутствии гидроксиламина, тиомочевиной в присутствии сернокислой меди или аскорбиновой кислотой в присутствии антимонилтартрата калия и последующем измерении светопоглощения растворов при $\lambda = 680 - 900$ нм, $\lambda = 680 - 880$ нм или $\lambda = 830 - 920$ нм соответственно.

2.2. Аппаратура и реактивы

Спектрофотометр или фотоэлектроколориметр.

Тигель платиновый по ГОСТ 6563-75.

Тигель стеклоуглеродный № 4.

Кислота азотная по ГОСТ 4461—77 или ГОСТ 11125—84, разбавленная 1:1, 1:10 и 5:95.

Кислота соляная по ГОСТ 3118-77 или по ГОСТ 14261-77,

разбавленная 1:1, 1:3, 1:20 и плотностью 1,105 г/см3.

Для приготовления раствора соляной кислоты плотностью 1,105 г/см³ 560 см³ соляной кислоты разбавляют водой до 1 дм³ и перемешивают.

Кислота серная по ГОСТ 4204—77 или по ГОСТ 14262—78 и разбавленная 1:4.

Кислота фтористоводородная по ГОСТ 10484-78.

Кислота хлорная квалификации «х. ч.» или «ч. д. а.».

Кислота аскорбиновая, раствор с массовой концентрацией 20 г/дм³. Натрий углекислый по ГОСТ 83-79.

Натрий азотистокислый по ГОСТ 4197—74, раствор с массовой концентрацией 50 г/дм³.

Калий марганцовокислый по ГОСТ 20490—75, раствор с массо-

вой концентрацией 40 г/дм3.

Калий фосфорнокислый однозамещенный по ГОСТ 4198-75.

Калия антимонилтартрат по нормативно-технической докумен-

тации, раствор с массовой концентрацией 3 г/дм3.

Квасцы железоаммонийные по НТД раствор с массовой концентрацией 100 г/дм³: 100 г железоаммонийных квасцов растворяют при нагревании в 150 см³ соляной кислоты, разбавленной 1:10, раствор охлаждают, фильтруют в мерную колбу вместимостью 1 дм³ и разбавляют водой до метки.

Аммиак водный по ГОСТ 3760—79, разбавленный 1:1, 1:100. Аммоний бромистый по ГОСТ 19275—73, раствор с массовой

концентрацией 100 г/дм3.

Аммоний молибденовокислый 4-водный, по ГОСТ 3765—78, перекристаллизованный, раствор с массовой концентрацией 50 г/дм³: 50 г молибденовокислого аммония растворяют в 300 см³ воды при 40 °C, раствор фильтруют в мерную колбу вместимостью 1 дм³, разбавляют до метки водой и перемещивают.

Раствор следует хранить в кварцевом или полиэтиленовом со-

суде.

Для перекристаллизации молибденовокислого аммония 250 г реактива растворяют в 400 см³ воды при нагревании до 70—80°С, раствор фильтруют через фильтр «белая лента», охлаждают до комнатной температуры, приливают при перемешивании 300 см³ этилового спирта, дают осадку отстояться в течение 1 ч и отфильтровывают его на фильтр «белая лента», помещенный в воронку Бюхнера, пользуясь водоструйным насосом. Осадок промывают 2—3 раза этиловым спиртом и высушивают на воздухе.

Гидроксиламин гидрохлорид по ГОСТ 5456—79 или гидроксиламин сернокислый по ГОСТ 7298—79, раствор с массовой кон-

центрацией 200 г/дм3.

Тиомочевина по ГОСТ 6344—73, раствор с массовой концентрацией 80 г/дм³.

Медь (II) сернокислая 5-водная по ГОСТ 4165—78, раствор с массовой концентрацией 10 г/дм³.

Калий сернистокислый пиро, раствор с массовой концентрацией 100 г/дм³.

Железо карбонильное раднотехническое по ГОСТ 13610—79. Спирт этиловый ректификованный по ГОСТ 18300—87 или по

ГОСТ 5962-67.

Восстановительная смесь: 150 см³ раствора сернокислой меди смешивают с 700 см³ раствора тиомочевины. После отстаивания в течение 24 ч смесь фильтруют через плотный фильтр и осадок отбрасывают.

Магний хлористый 6-водный по ГОСТ 4209-77.

Аммоний хлористый по ГОСТ 3773--72.

Бумага индикаторная «конго».

Магнезиальная смесь: 50 г хлористого магния и 100 г хлористото аммония растворяют в 500 см³ воды, прибавляют небольшой избыток аммиака и оставляют раствор на 12 ч, после чего отфильтровывают осадок на плотный фильтр. К фильтрату прибавляют соляную кислоту (1:1) до появления синей окраски индикаторной бумаги конго.

Реакционная смесь: 1,74 г молибденовокислого аммония растворяют в 100 см³ воды при нагревании, прибавляют 21 см³ серной кислоты, охлаждают, доливают водой до 250 см³ и перемешивают;

готовят перед применением.

Стандартный раствор фосфора: 0,4393 г однозамещенного фосфорнокислого калия, перекристаллизованного и высущенного до постоянной массы при 100—105 °С, помещают в мерную колбу вместимостью 1 дм³, растворяют в 100 см³ воды, доливают водой до метки и перемещивают.

1 см³ раствора содержит 0,0001 г фосфора.

При необходимости устанавливают массовую концентрацию стандартного раствора фосфора: 50 см³ стандартного раствора помещают в стакан вместимостью 300 см³, прибавляют 5 см³ соляной кислоты и 20 см³ магнезиальной смеси. Прибавляют раствор аммиака до появления запаха, охлаждают до температуры не выше 10 °C, энергично перемешивают стеклянной палочкой, добавляют еще 10 см³ аммиака и оставляют на 12 ч.

Осадок отфильтровывают на плотный фильтр с небольшим количеством беззольной фильтро-бумажной массы и промывают 12— —15 раз холодным раствором аммиака (1:100). Фильтр с осадком помещают в прокаленный и взвешенный платиновый тигель, высушивают, озоляют и прокаливают при 1000—1100 °С, после чего охлаждают и взвешивают. Одновременно проводят контрольный опыт на содержание фосфора в реактивах.

Массовую концентрацию стандартного раствора (T), выраженную в граммах фосфора на 1 см³ раствора, вычисляют по формуле

$$T = \frac{(m_1 - m_2) \cdot 0.2787}{V}$$
,

где m₁, m₂ — масса осадка пирофосфорнокислого магния соответственно в анализируемом образце и в растворе контрольного опыта, г;

0,2787 — коэффициент пересчета массы осадка пирофосфорнокислого магния на фосфор;

V — объем раствора, взятый для анализа, см³.

2.3. Проведение анализа

2.3.1. Навеску стали или чугуна в зависимости от массовой доли фосфора (табл. 2) помещают в колбу или стакан вместимостью 100 см³ и растворяют при нагревании в 20—30 см³ горячей азотной кислоты (1:1).

Таблица 2

Массовая доля фосфора, %	Масса навески, г.		
От 0,005 до 0,05 включ.	1,0		
Cs. 0,05 > 0,10 »	0,5		
> 0,10 > 0,25 >	0,25		

После полного растворения навески прибавляют по каплям раствор марганцовокислого калия до выпадення бурого осадка диоксида марганца (2—4 см³) и кипятят 2—3 мин. Затем к раствору приливают по каплям раствор азотнетокислого натрия до растворения осадка и полного просветления раствора и кипятят до удаления оксидов азота.

Раствор выпаривают досуха, прибавляют 10 см³ соляной кислоты и снова выпаривают досуха. К сухому остатку приливают 15 см³ соляной кислоты и нагревают до растворения солей, прибавляют 20—30 см³ воды, охлаждают и переводят раствор в мерную колбу вместимостью 100 см³, раствор доливают до метки водой и перемешивают.

Если образуется осадок (графит, кремниевая кислота), его отделяют, отфильтровывая раствор на фильтр средней плотности с небольшим количеством фильтробумажной массы. Осадок на фильтре промывают 5—6 раз горячим раствором соляной кислоты (5:95) и 3—4 раза горячей водой.

Фильтр с осадком отбрасывают, если массовая доля кремния в

пробе не превышает 1 %.

При массовой доле кремния выше 1 % фильтр с осадком помещают в платиновый тигель, высушивают, озоляют и прокаливают при 800—900 °С. Осадок смачивают 2—3 каплями воды, добавляют 3—5 капель серной кислоты (1:4), 3—5 см³ фтористоводородной кислоты и осторожно выпаривают содержимое тигля досуха. Осадок в тигле сплавляют с 1—2 г углекислого натрия при 1000—1100 °С в течение 10—15 мин. Плав выщелачивают водой и отфильтровывают на фильтр средней плотности. Тигель обмывают водой и присоединяют фильтрат к основному раствору. Раствор выпаривают до объема 50—60 см³, переносят в мерную колбу вместимостью 100 см³, доливают до метки водой и перемешивают.

Примечание. Операцию удаления кремния можно проводить, используя стеклоуглеродный тигель. Для этого навеску стали или чугуна помещают в стеклоуглеродный тигель и растворяют при нагревании в 20—30 см³ горячей азотной кислоты (1:1) и 5 см³ фтористоводородной кислоты. Раствор выпаривают состояния влажных солей, после чего приливают 5 см³ азотной кислоты (1:1), 20 см³ воды и кипитит раствор до полного удаления оксидов азота, далее анализ продолжают, как указано выше.

Если массовая доля мышьяка в анализируемом образце более чем в два раза превышает массовую долю фосфора, то его удаляют в виде бромида. При массовой доле фосфора менее 0,01 % удаляют любое количество мышьяка. Для этого раствор после окисления фосфора выпаривают досуха. Сухой остаток растворяют в 10 см³ соляной кислоты и снова выпаривают досуха. Затем сухой остаток растворяют в 10 см³ соляной кислоты, прибавляют 10 см³ раствора бромистого аммония и выпаривают раствор досуха. Обработку соляной кислотый и нагревают до растворения приливают 15 см³ соляной кислоты и нагревают до растворения солей, прибавляют 20—40 см³ воды.

Раствор охлаждают, переводят в мерную колбу вместимостью

100 см³, доливают до метки водой и перемешивают.

2.3.2. Определение фосфора с применением в качестве восстановителя ионов двухвалентного железа в присутствии солянокислого или сернокислого гидроксиламина (при массовой доле фосфора.

от 0,05 до 0,25 %).

В две мерные колбы вместимостью по 100 см³ помещают аликвотные части полученного раствора, равные 100 см³, приливают 10
см³ воды (в случае навески пробы 0,25 г в колбы добавляют 1—
—2 см³ раствора железоаммонийных квасцов) и раствор аммиака,
до начала выпадения гидроксида железа, который затем растворяют, добавляя по каплям соляную кислоту плотностью 1,105 г/см³.
Добавляют 10 см³ раствора гидроксиламина и оставляют на теплой плите до обесцвечивания раствора. Если растворы сохраняют
желтоватую окраску, необходимо добавить по 1—2 капли раствора аммнака (1:1), при появлении мути добавляют по 2—3 капли соляной кислоты плотностью 1,105 г/см³.

Растворы охлаждают и приливают по 10 см³ раствора соляной кислоты плотностью 1,105 г/см³. В одну из мерных колб приливают по каплям, при непрерывном перемешивании 8 см³ раствора молибденовокислого аммония. Раствор перемешивают в течение 1—2 мин до появления голубой окраски, доливают водой до метки

и перемешивают.

Оптическую плотность растворов измеряют через 10 мин на спектрофотометре при длине волны 680—900 нм или на фотоэлектроколориметре с красным светофильтром, имеющим область пропускания в интервале длин волн 620—640 нм. В качестве раствора сравнения используют вторую аликвотную часть, к которой добавлены все указанные реактивы, за исключением раствора молибденовокислого аммония. Одновременно с выполнением анализа проводят контрольный опыт на загрязнение реактивов. В аликвотную часть контрольного опыта прибавляют 5 см³ раствора железоаммонийных квасцов, воды до объема 25—30 см³ и нейтрализуют аммиаком, далее анализ продолжают как указано выше.

Из значения оптической плотности каждого анализируемого раствора вычитают значение оптической плотности контрольного

опыта.

Массу фосфора находят по градунровочному графику или мето-

дом сравнения со стандартным образцом.

2.3.3. Определение фосфора с применением в качестве восстановителя тиомочевины (при массовой доле фосфора от 0,01 до 0,25 %).

В две мерные колбы вместимостью до 100 см³ помещают аликвотные части равные 10 см³ полученного по п. 2.3.1 испытуемого раствора, приливают 15 см³ воды и по каплям раствор аммиака (1:1) до начала выпадения гидроксида железа, который растворяют, прибавляя по каплям раствор соляной кислоты плотностью 1,105 г/см³ и 2 см³ в избыток. К полученному раствору прибавляют 10 см³ восстановительной смеси, дают постоять 1—2 мин, прибавляют 10 см³ соляной кислоты плотностью 1,105 см³ и по каплям при непрерывном перемешивании в одну из колб прибавляют 8 см³ раствора молибденовокислого аммония. Раствор перемешивают в течение 1—2 мин, после чего разбавляют водой до метки и перемешивают.

Через 10 мин измеряют оптическую плотность раствора на спектрофотометре при λ=680-880 нм или на фотоэлектроколориметре с красным светофильтром, имеющим область пропускания в интервале длин волн 620-640 нм. В качестве раствора сравнения используют вторую аликвотную часть анализируемой пробы, в которую прибавляют все реактивы за исключением раствора молибде-

новокислого аммония.

Одновременно с выполнением анализа проводят контрольный опыт на загрязнение реактивов. В аликвотную часть контрольного опыта прибавляют 5 см³ раствора железоаммонийных квасцов, воды до объема 25—30 см³ и неитрализуют аммиаком, далее анализ продолжают как указано выше.

Из значения оптической плотности каждого анализируемого раствора вычитают значение оптической плотности контрольного

опыта.

Массу фосфора находят по градуировочному графику или мето-

дом сравнения со стандартным образцом.

2.3.4. Определение фосфора с применением в качестве восстановителя аскорбиновой кислоты в присутствии антимонилтартрата калия (при массовой доле фосфора от 0,005 до 0,25 %).

В два стакана вместимостью 100 см3 помещают аликвотные ча-

сти равные 10 см³ полученного по п. 2.3.1 испытуемого раствора (при массовой доле фосфора 0,005—0,02%) или 5 см³ (при массовой доле фосфора 0,02—0,25%), прибавляют по 1—2 см³ хлорной кислоты (плотностью 1,5 г/см³) и выпаривают растворы до

начала выделения ее паров.

Соли растворяют в 20 см³ воды при нагревании, добавляют 3 см³ раствора сульфита натрия и кипятят 2—3 мин. Растворы охлаждают до температуры не менее 20 °С. В один из стаканов приливают 5 см³ реакционной смеси, 10 см³ раствора аскорбиновой кислоты и 1 см³ раствора антимонилтартрата калия.

Раствор переводят в мерную колбу вместимостью 100 см³, доли-

вают водой до метки и перемешивают.

Оптическую плотность раствора измеряют через 10 мин на спектрофотометре при длине волны 880 им или на фотоэлектроколориметре со светофильтром, имеющим область пропускания 680—750 или 830—920 им.

В качестве раствора сравнения используют вторую аликвотную часть, к которой добавлены все указанные выше реактивы, за исключением реакционной смеси.

Результаты анализа с учетом поправки контрольного опыта вычисляют по градуировочному графику или методом сравнения со стандартным образцом.

2.3.5. Построение градунровочного графика

В девять конических колб или стаканов помещают навески карбонильного железа, соответствующие массе навески анализируемой пробы. В восемь из них добавляют 0,5; 1,0; 2,0; 3,0; 4,0; 5,0; 6,0 и 7,0 см³ стандартного раствора фосфора. Девятая колба служит для проведения контрольного опыта на содержание фосфора в реактивах.

В колбы приливают 20—30 см³ азотной кислоты (1:1) и нагревают до полного растворения навески, прибавляют по каплям раствор марганцовокислого калия до выпадения бурого осадка диоксида марганца и кипятят 2—3 мин. Затем к раствору приливают по каплям раствор азотистокислого натрия до растворения осадка и полного просветления раствора и кипятят до удаления оксидов азота.

Раствор выпаривают досуха, прибавляют 10 см³ соляной кислоты и снова выпаривают досуха. К сухому остатку приливают 15 см³ соляной кислоты и нагревают до растворения солей, прибавляют 20—30 см³ воды, охлаждают и переводят раствор в мерную колбу вместимостью 100 см³. Раствор доливают до метки водой и перемещивают.

В случае определения фосфора с применением в качестве восстановителя ионов двухвалентного железа в присутствии солянокислого гидроксиламина или тномочевины, отбирают аликвотную часть раствора, равную 10 см³, что соответствует 0,000005; 0,000010; 0,000020; 0,000030; 0,000040; 0,000050; 0,000060 # 0,000070 r

фосфора.

В случае определения фосфора с аскорбиновой кислотой отбирают аликвотную часть раствора, равную 5 см³, что соответствует: 0,0000025; 0,0000050; 0,0000100; 0,0000150; 0,0000200; 0,0000300 и 0,0000350 г фосфора.

Далее анализ проводят как указано в пп. 2.3.2, 2.3.3 или 2.3.4.

В качестве раствора сравнения используют аликвотную часть раствора контрольного опыта, в которую добавлены все реактивы за исключением раствора молибденовокислого аммония (если анализ проводят по пп. 2.3.2. или 2.3.3.), или раствора реакционной смеси, если по п. 2.3.4.

По найденным значениям оптической плотности с учетом поправки контрольного опыта и соответствующим им значениям массы фосфора строят градуировочный график. Допускается построение градуировочного графика в координатах: оптическая плотность — массовая доля фосфора.

2.4. Обработка результатов

2.4.1. Массовую долю фосфора (X_1) в процентах вычисляют по формуле

$$X_1 - \frac{m_1 \cdot 100}{m}$$
,

где m_1 — масса фосфора, найденная по градупровочному графику, г;

 м — масса навески пробы, соответствующая аликвотной части раствора, г.

2.4.2. Нормы точности и нормативы контроля точности определения массовой доли фосфора приведены в табл. 1.

з. ТИТРИМЕТРИЧЕСКИЙ МЕТОД

3.1. Сущность метода

Метод основан на осаждении окисленного до пятивалентного состояния фосфора в виде фосфорномолибденового комплекса желтого цвета, растворении осадка в растворе гидроксида натрия и титровании избытка гидроксида натрия азотной кислотой.

3.2. Реактивы и растворы

Платиновый тигель по ГОСТ 6563-75.

Стеклоуглеродный тигель № 4.

Кислота соляная по ГОСТ 3118-77.

Кислота азотная по ГОСТ 4461—77 или ГОСТ 11125—84 и разбавленная 1:1, 1:10 и 1:100.

Калий марганцовокислый по ГОСТ 20490—75 раствор с массовой концентрацией 40 г/дм³. Калий азотнокислый по ГОСТ 4217—77, раствор с массовой концентрацией 10 г/дм³.

Кислота фтористоводородная по ГОСТ 10484-78.

Натрий азотистокислый по ГОСТ 4197—74, раствор с массовой концентрацией 50 г/дм³.

Натрий углекислый по ГОСТ 83-79.

Аммоний бромистый по ГОСТ 19275—73, раствор с массовой концентрацией 100 г/дм³.

Калий бромистый по ГОСТ 4160-74 раствор с массовой кон-

центрацией 100 г/дм³.

Аммоний молибденовокислый по ГОСТ 3765—78.

Аммиак водный по ГОСТ 3760-79.

Аммоний роданистый, раствор с массовой концентрацией 100 г/дм³.

Бария гидроксид, 8-водный по ГОСТ 4107-78.

Кислота щавелевая по ГОСТ 22180—76, перекристаллизованная и высушенная до постоянной массы при 110—120 °C.

Известь натронная.

Спирт этиловый ректификованный по ГОСТ 18300—87 или по ГОСТ 5962—67.

Молибденовая жидкость: 36 г молибденовокислого аммония растворяют в 30 см³ раствора аммиака и 50 см³ воды; 115 см³ раствора аммиака осторожно вливают в 575 см³ азотной кислоты (1:1) и добавляют 230 см³ воды. Полученные растворы охлаждают и смешивают, осторожно вливая первый раствор во второй при сильном взбалтывании, чтобы образующаяся белая муть растворилась. При этом нужно периодически охлаждать раствор, не допуская его нагревания. Затем раствор выдерживают в течение 48 ч; перед применением фильтруют.

Индикатор фенолфталенн по НТД, спиртовой раствор с массовой концентрацией 10 г/дм³; 1 г фенолфталенна растворяют

в 60 см3 этилового спирта и добавляют 40 см3 воды.

Вода нейтральная: к 1 дм³ дистиллированной воды, из которой предварительно удаляют углекислоту кипячением в течение 2—3 ч, приливают 5 см³ раствора фенолфталенна и такое количество стандартного раствора гидроксида натрия, чтобы вода приобрела устойчивую розовую окраску. Затем к раствору прибавляют по каплям стандартный раствор азотной кислоты до исчезновения окраски. 50 см³ нейтрализованной таким образом воды должны окраснться в розовый цвет от прибавления одной капли стандартного раствора гидроксида натрия.

Натрия гидроксид по ГОСТ 4328—77, стандартный раствор: 35 г натрия гидроксида растворяют в 10 дм⁵ холодной воды, освобожденной от углекислоты предварительным кипячением в течение 2—3 ч. К раствору прибавляют 5 г гидроксида бария, перемешивают и выдерживают в течение 2—3 суток, пока образовавшийся

осадок углекислого бария отстоится полностью. Раствор хранят в бутыли, закрытой резиновой пробкой с двумя отверстиями: в одно из них вставлен поглотитель с натронной известью, в другое сифонная трубка с краном, не доходящая до дна бутыли на 0.5 см. с загнутым к верху концом.

Прозрачный раствор сифонируют в другую бутыль и хранят,

как указано выше.

Кислота азотная, стандартный раствор: 50 см3 азотной кислоты помещают в бутыль и разбавляют до объема 10 дм³ водой, из которой предварительно удаляют углекислоту кипячением в тече-ние 2—3 ч, 1 см³ раствора азотной кислоты должен примерно соответствовать 1 см³ титрованого раствора гидроксида натрия. Раствор хранят в бутыли, закрытой резиновой пробкой с двумя отверстиями: в одно из них вставлен поглотитель с натронной известью, в другое - сифонная трубка (с краном), не доходящая до дна бутыли на 0,5 см.

Устанавливают соотношение между стандартными растворами гидроксида натрия и азотной кислоты: в коническую колбу вместимостью 250 см3 наливают из бюретки 25 см3 раствора гидроксида натрия, прибавляют 25 см³ нейтральной воды и титруют стандартным раствором азотной кислоты до исчезновения розовой ок-

раски.

Коэффициент (К), определяющий соотношение между объемами растворов гидроксида натрия и азотной кислоты, вычисляют по формуле

$$K = \frac{V}{V_1}$$
,

где V — объем раствора гидроксида натрия, взятый для титрования, см 3 ; V_1 — объем раствора азотной кислоты, израсходованный на

титрование, см3.

Массовую концентрацию раствора гидроксида натрия устанавливают по навеске щавелевой кислоты или по стандартному образцу, близкому по составу и массовой доле фосфора к анализируемой пробе.

Массовую концентрацию раствора гидроксида натрия (T_1) , выраженную в граммах фосфора на 1 см3 раствора, вычисляют по формуле

$$T_1 - \frac{m}{V} \cdot 0,0214,$$

где m — навеска щавелевой кислоты, г:

 V — объем раствора гидроксида натрия, израсходованный на титрование щавелевой кислоты, см3;

0,0214 — соотношение эквивалентных масс фосфора и щавелевой кислоты.

3.3. Проведение анализа

Навеску стали или чугуна в зависимости от массовой доли фосфора (см. табл. 3) помещают в коническую колбу вместимостью 250 см³ и растворяют при нагревании в 30—40 см³ азотной кислоты (1:1), накрыв колбу часовым стеклом. Сняв стекло, кипятят раствор до удаления оксидов азота.

Таблица 3

Массовая доля фосфора, %	Навеска стали яли чугуна, :	
От 0,02 до 0,08 включ.		
Св. 0,08 > 0,25 >	2,0 1,0 0,5 0,2	
> 0,25 > 1,0 >	0.5	
> 1,0 > 2,5 >	0,2	

Если образуется осадок (графит, кремниевая кислота) его отфильтровывают на фильтр «белая лента» с добавлением небольшого количества беззольной бумажной массы, собирая фильтрат в коническую колбу вместимостью 300 см³. Осадок на фильтре промывают 6—8 раз горячей азотной кислотой (1:100). Фильтр с осадком отбрасывают, если массовая доля кремния не превышает 1,5 %.

Если массовая доля кремния в анализируемом образце превышает 1,5 %, фильтр с осадком кремниевой кислоты помещают в платиновый тигель, высушивают, озоляют и прокаливают при 800 —900 °С. Осадок смачивают 2—3 каплями воды, добавляют 8—10 капель азотной кислоты, 3—5 см³ фтористоводородной кислоты и осторожно выпаривают содержимое тигля досуха. Остаток в тигле сплавляют с 1—2 г углекислого натрия при 1000—1100 °С. Плав выщелачивают азотной кислотой (1:10), при кипячении. Тигель обмывают водой, полученный раствор фильтруют и присоединяют к основному фильтрату. Раствор выпаривают до 50—60 см³.

Примечание. Операцию удаления кремния можно проводить, используя стеклоуглеродный тигель, как приведено в п. 2.3.1.

К кинящему раствору приливают 5 см³ раствора марганцовокислого калия и кинятят до выпадения бурого осадка диоксида марганца. Не прекращая нагревания, прибавляют по каплям раствор азотистокислого натрия до полного растворения осадка и получения прозрачного раствора. Раствор кинятят до удаления оксидов азота.

Если массовая доля мышьяка в анализируемой пробе более 10 % от массовой доли фосфора или, если массовая доля мышьяка неизвестна, последний удаляют отгонкой. Для этого раствор выпаривают досуха, к сухому остатку прибавляют 10 см³ соляной кислоты и снова выпаривают раствор досуха. Эту операцию выполняют три раза для разложения нитратов. Сухой остаток растворяют

при нагревании в 15 см³ соляной кислоты, приливают 10 см³ раствора бромистого аммония или бромистого калия и выпаривают до состояния влажных солей. Выпаривание раствора до состояния влажных солей повторяют, добавляя перед выпариванием 10 см³ соляной кислоты, затем прибавляют 10 см³ азотной кислоты и выпаривают до состояния влажных солей. Прибавление азотной кислоты и выпаривание до состояния влажных солей проводят двараза. После этого прибавляют 10 см³ азотной кислоты, 10—15 см³ воды и нагревают до растворения солей.

Раствор охлаждают, приливают к нему раствор аммиака до начала выпадения осадка гидроксида железа, который растворяют несколькими каплями азотной кислоты, после чего прибавляют

5 см³ кислоты в избыток.

Раствор нагревают до 50—60 °C, прибавляют 50 см³ молибденовой жидкости и взбалтывают несколько минут до выпадения желтого осадка фосфорномолибденовокислого аммония. Осадку дают

отстояться в теплом месте в течение 2-3 ч.

Осадок отфильтровывают на фильтр «синяя лента» с добавлением небольшого количества беззольной бумажной массы. Колбу, в которой проводилось осаждение, и осадок на фильтре промывают 5—7 раз азотной кислотой (1:100) для удаления железа. Для проверки полноты отмывания осадка от железа 0,5—1 см³ стекающей промывной жидкости собирают в пробирку и приливают 3—5 капель роданистого аммония. Жидкость в пробирке должна остаться бесцветной.

Осадок на фильтре промывают раствором азотнокислого калия для удаления азотной кислоты. Для проверки полноты отмывания осадка 2—3 см³ фильтрата отбирают в пробирку, прибавляют две капли раствора фенолфталенна и одну каплю раствора гидроксида натрия. Если осадок отмыт, раствор в пробирке должен окра-

ситься в розовый цвет.

Фильтрат отбрасывают. Фильтр с осадком помещают в колбу, в которой проводилось осаждение, приливают 25 см³ нейтральной воды, пять капель фенолфталеина, разрывают фильтр стеклянной палочкой на мелкие части и содержимое колбы взбалтывают. Приливают из бюретки стандартный раствор гилросида натрия до появления неисчезающей розовой окраски раствора и в избыток 3—5 см³, закрывают колбу резиновой пробкой и взбалтывают содержимое до полного растворения осадка. Пробку вынимают, ополаскивают ее и стенки колбы нейтральной водой и титруют избыток раствора гидроксида натрия стандартным раствором азотной кислоты до исчезновения розовой окраски.

Одновременно проводят контрольный опыт на содержание фосфора в реактивах. К фильтру с осадком контрольного опыта приливают 25 см³ нейтральной воды, 25 см³ стандартного раствора гидроксида натрия и после растворения осадка оттитровывают избыток гидроксида натрия стандартным раствором азотной кислоты, как описано выше.

3.4. Обработка результатов

 3.4.1. Массовую долю фосфора (X₂) в процентах вычисляют по формуле

$$X_2 = \frac{(V-V_1K) \cdot T_1 \cdot 100}{m}$$
.

rge

V — объем раствора гидроксида натрия, взятый с избытком для растворения осадка фосфорномолибденовокислого аммония, см³;

 V_1 — объем раствора азотной кислоты, израсходованный на титрование избытка гидроксида натрия с учетом объема, израсходованного на титрование раствора контрольного опыта, см³;

Т₁ — массовая концентрация раствора гидроксида натрия, вы-

раженная в граммах фосфора;

К — коэффициент соотношения между стандартными растворами гидроксида натрия и азотной кислоты;

т — масса навески пробы, г.

3.4.2. Нормы точности и нормативы контроля точности определения массовой доли фосфора приведены в табл. 1.

4. ГРАВИМЕТРИЧЕСКИЯ МЕТОД

4.1. Сущность метода

Метод основан на растворении пробы в смеси азотной и соляной кислот, выделении фосфора в виде фосфорномолибденовокислого аммония, растворении осадка в аммиаке, выделении молибденовокислого свинца, взвешивании прокаленного осадка и пересчете на массовую долю фосфора.

4.2. Реактивы и растворы Кислота азотная по ГОСТ 4461—77 и разбавленная 1:1 и 2:3. Кислота соляная по ГОСТ 3118-77 и разбавленная 1:1, 1:2, 5:95 и 2:98.

Кислота хлорная плотностью 1,54 г/см3.

Кислота фтористоводородная по ГОСТ 10484-78.

Натрий углекислый по ГОСТ 83-79.

Аммоний роданистый, раствор 50 г/дм³. Железо хлорное по ГОСТ 4147—74, раствор 100 г/дм³. Аммиак водный по ГОСТ 3760—79, разбавленный 1:2 и 5:95.

Кислота бромистоводородная, плотностью 1,49 г/см³. Калий марганцовокислый по ГОСТ 20490—75, раствор 40 г/дм³. Натрий азотистокислый по ГОСТ 4197—74, раствор 300 г/дм³. Калий азотнокислый по ГОСТ 4217—77, раствор 30 г/дм³.

Гидроксиламин сернокислый по ГОСТ 7298-79, или гидрокси-

ламин гидрохлорид по ГОСТ 5456-79, раствор 100 г/дм³.

Аммоний молибденовокислый по ГОСТ 3765—78, раствор: 300 г тонкорастертого молибденовокислого аммония растворяют в 2 дм³ воды и, перемешивая, вливают тонкой струей в 2 дм³ раствора азотной кислоты (1:1). Прибавляют 1 г фосфорнокислого аммония, перемешивают и спустя 24 ч отфильтровывают осадок.

Раствор для промывания: 20 см³ раствора азотной кислоты вливают в 980 см³ воды, добавляют 50 г азотнокислого аммония,

перемешивают и отфильтровывают.

Аммоний уксуснокислый по ГОСТ 3117—78, раствор 250 г/дм³. Свинец уксуснокислый по ГОСТ 1027—67, раствор 40 г/дм³. Аммоний хлористый по ГОСТ 3773—72.

Аммоний фосфорнокислый

Сероводород из аппарата Киппа.

4.3. Проведение анализа

4.3.1. В зависимости от массовой доли фосфора берут навеску в количестве, указанном в табл. 4.

Таблица 4

Массовая доля фосфора, %	Напески стали, г		
Св. 0,01 до 0,03 включ.	4		
> 0.03 > 0.08 >	3		
> 0.08 > 0.25 >	2		
> 0.25 > 0.40 >	ī		
> 0,40	0,5		

4.3.1.1. Анализ чугуна с массовой долей фосфора, превышающей указанную в табл. 4, проводят на части раствора с меньшей навеской.

4.3.2. Чугун и сталь с массовой долей титана, циркония, воль-

фрама, мышьяка и молибдена не более 0,1 %

Навеску стали или чугуна растворяют, слегка нагревая в 15 см³ раствора азотной кислоты (1:1) и 30 см³ соляной кислоты в стакане вместимостью 400 см³. После растворения пробы раствор выпаривают досуха.

После охлаждения остаток растворяют в 15 см³ соляной кислоты, выпаривают досуха и высушивают при температуре 130—135°C для удаления соляной кислоты и переведения кремниевой кислоты в нерастворимое состояние. Если во время растворения не разложились карбиды и проба содержит свыше 0,5 % кремния, добавляют 10—15 см³ хлорной кислоты, накрывают стеклом и выпаривают до густых паров. К остатку добавляют 20 см³ соляной кислоты, 80 см³ горячей воды и нагревают до растворения солей.

Содержимое стакана отфильтровывают через фильтр с бумажной массой, осадок промывают 4—5 раз горячим раствором соля-

ной кислоты (5:95), а затем 3—4 раза горячей водой. Фильтр с осадком отбрасывают. К фильтрату добавляют 20 см³ азотной кислоты и упаривают до минимального объема, избегая при этом выделения солей.

Выпаривание с азотной кислотой повторяют еще раз. Затем добавляют 15 см³ азотной кислоты, 80 см³ горячей воды и оставляют для дальнейшего хода анализа.

4.3.3. Чугун и сталь с массовой долей титана, ниобия и циркония свыше 0,1 %

Навеску стали или чугуна растворяют и приготовляют раствор, как указано в п. 4.3.2. Осадок отфильтровывают, высушивают, озоляют и прокаливают в платиновом тигле при температуре 550 °C. В тигель доливают 2—3 см³ раствора азотной кислоты (1:1), 5-10 см³ раствора фтористоводородной кислоты, осторожно выпаривают досуха и слегка прокаливают. Осадок в тигле сплавляют с 2-3 г углекислого натрия и выщелачивают плав 80 см³ горячей воды в стакане вместимостью 100-150 см³. Из стакана вынимают тигель и ополаскивают водой, раствор нагревают при температуре 70-80 °C в течение 15 мин, затем отфильтровывают осадок через фильтр с бумажной массой и промывают несколько раз горячей водой. Фильтр отбрасывают, а фильтрат присоединяют к основному раствору, добавляют 20 см3 азотной кислоты и упаривают до минимального объема, избегая при этом выделения солей. Выпаривание с азотной кислотой повторяют еще раз. Затем доливают 15 см³ азотной кислоты, 80 см³ горячей воды и оставляют для дальнейшего хода анализа.

4.3.4. Чугун и сталь, содержащие вольфрам

Навеску стали или чугуна растворяют и приготовляют раствор, как указано в п. 4.3.2 до момента перевода кремниевой кислоты

в нерастворимое состояние.

К сухому остатку доливают 20 см³ соляной кислоты, 80 см³ горячей воды и нагревают до растворения солей. Содержимое тигля отфильтровывают через фильтр с бумажной массой, осадок промывают 4—5 раз горячим раствором соляной кислоты (5:95), а затем еще 3—4 раза горячей водой. К раствору доливают 20 см³ азотной кислоты и упаривают до минимального объема, избегая при этом выделения солей.

Операцию повторяют еще раз, затем доливают 15 см³ азотной кислоты, 80 см³ горячей воды, нагревают до растворения солей и оставляют. При выделении осадка вольфрамовой кислоты его отфильтровывают и промывают указанным выше способом. Соединяют осадки, сжигают их в платиновом тигле, прокаливают и удаляют кремнезем, как указано в п. 4.3.3. Осадок в тигле сплавляют с 3—5 г углекислого натрия, плав выщелачивают 80 см³ горячей воды в стакане вместимостью 250 см³. Прозрачный раствор подкисляют азотной кислотой до появления желтой мути, добавляют

2 см³ раствора хлорного железа и 10—15 см³ аммиака. Содержимое стакана нагревают до кипения, отфильтровывают осадок гидроокиси железа и фосфорнокислого железа и промывают 2—3 раза горячим раствором аммиака (5:95).

Осадок на фильтре растворяют в 10—15 см³ горячего раствора азотной кислоты (2:3). Фильтр промывают несколько раз горячей водой, полученный раствор присоединяют к основному фильтрату

и оставляют для дальнейшего хода анализа.

4.3.5. Чугун и сталь с массовой долей мышьяка свыше 0,05 % Навеску стали или чугуна растворяют, слегка нагревая в 15 см³ раствора азотной кислоты (1:1) и 30 см3 соляной кислоты в стакане вместимостью 400 см3. После растворения пробы раствор упаривают досуха, охлаждают, осадок смачивают 15 см3 соляной кислоты, затем снова упаривают досуха и высушивают при температуре 130-135 °C для переведения кремниевой кислоты в нерастворимое состояние. После охлаждения в стакан приливают 50 см3 раствора соляной кислоты (1:2) и нагревают до растворения солей. В раствор добавляют 30-40 см3 бромистоводородной кислоты и выпаривают досуха. Выпаривание с бромистоводородной кислотой повторяют, добавив предварительно 30-40 см3 соляной кислоты. Раствор выпаривают до появления солей, добавляют 10 см3 соляной кислоты и разбавляют 50 см3 горячей воды, нагревают до растворения солей и отфильтровывают. Осадок кремнезема и графита промывают на фильтре раствором соляной кислоты (2:98), к фильтрату прибавляют 20 см³ азотной кислоты и упаривают до минимального объема, избегая при этом выделения солей.

Повторяют упаривание с азотной кислотой, затем прибавляют 15 см³ этой же кислоты, 80 см³ горячей воды и оставляют раствор

для дальнейшего хода анализа.

4.3.6. Чугун и сталь с массовой долей молибдена свыше 1 % Навеску стали или чугуна растворяют и затем поступают как указано в п. 4.3.2 до удаления кремнезема. При необходимости раствор выпаривают до объема примерно 200 см³, нейтрализуют аммиаком до появления в растворе удерживающейся мути и добавляют еще избыток 10 см³.

Через нагретый раствор в течение 30 мин пропускают сероводород. Полученный тиомолибдат аммония разлагают, подкисляя небольшим избытком раствора соляной кислоты (1:1). Отстаивают и отфильтровывают выделенный сульфид молибдена, затем промывают раствором соляной кислоты (2:98) до прекращения выделения сероводорода. Фильтр отбрасывают, а фильтрат упаривают до минимального объема, избегая при этом выделения солей. Затем прибавляют 20 см³ азотной кислоты и повторяют упаривание. Эту операцию проводят два раза. Затем к остатку добавляют 15 см³ азотной кислоты, 80 см³ горячей воды и оставляют для дальнейшего хода анализа. 4.3.7. Окисление фосфора до фосфорной кислоты и осаждение

осадка фосфорномолибденовокислого аммония

К раствору, полученному одним из способов, описанных в п. 4.3.2, помещенному в коническую колбу вместимостью 300 см³ и нагретому почти до температуры кипения, прибавляют раствор перманганата калня в количестве, необходимом для получения интенсивной розовой окраски (не менее 5 см³). Содержимое колбы кипятят до выделения коричневой гидратированной окиси марганца, и, не прекращая нагревания, прибавляют по каплям растворнитрита натрия до растворения осадка и получения прозрачного раствора.

Раствор выпаривают до объема около 40 см³, охлаждают, доливают осторожно аммиак до выпадения неисчезающего осадка гидроокиси железа, осадок растворяют, прибавляя несколько капель азотной кислоты, затем доливают избыток 5 см³ этой же кислоты, 15 г азотнокислого аммония и перемешивают содержимое колбы до растворения реактива. В случае присутствия в пробе ванадия, раствор охлаждают до комнатной температуры, прибавляют 15 см³ раствора сернокислого или солянокислого гидроксиламина для восстановления пятивалентного ванадия до четырехвалентного и, перемешивая, нагревают до температуры 50—60 °С и выдерживают в течение 1 мин.

Затем прибавляют еще 5 см³ этого реактива и, не охлаждая раствора, доливают 50 см³ раствора молибденовокислого аммония, встряхивая в течение 2—3 мин в колбе, закрытой резиновой пробкой. Раствор оставляют стоять на водяной бане при температуре 30—35 °С в течение 2—3 ч. Раствор проб, не содержащих ванадия, нагревают до температуры 50—60 °С и осаждают фосфор, как указано выше. Содержимое колбы охлаждают, осадок отфильтровывают через фильтр средней плотности и промывают на фильтре 6—7 раз раствором для промывания, проверяя на отсутствие иона железа (капельная проба с роданистым аммонием), затем промывают несколько раз раствором нитрата калия.

4.3.8. Растворение осадка фосфорномолибденовокислого аммо-

4.3.8. Растворение осадка фосфорномолибденовокислого аммония и осаждение раствора молибдена в виде молибденовокислого свинца

Отфильтрованный и промытый осадок фосфорномолибденовокислого аммония растворяют на фильтре в 15 см³ горячего раствора аммиака (1:2), добавляя его порциями по 3—4 см³. Фильтрат собирают в стакан вместимостью 400 см³. Фильтр промывают 2—3 раза порциями по 5 см³ горячей воды. Фильтрат нагревают до начала кипения. Одновременно в другом стакане вместимостью 250 см³ нагревают 50 см³ раствора уксуснокислого аммония, к которому прибавлено 10 г хлористого аммония. С момента начала кипения к раствору, содержащему фосфоромолибдат, прибавляют 5—7 см³ соляной кислоты, 10 см³ раствора уксуснокислого свинца н переливают в кипящий раствор уксуснокислого аммония, ополаскивая стакан 2—3 раза горячей водой, вливая воду после промыва-

ния в стакан с уксуснокислым аммонием.

Выпавщий осадок молибденовокислого свинца выдерживают в теплом месте в течение 20—30 мин, после чего отфильтровывают через малый беззольный фильтр с бумажной массой и промывают водой до отрицательной реакции на ион свинца (контроль бумажкой, насыщенной йодистым калием).

Промытый осадок вместе с фильтром помещают во взвещенный фарфоровый тигель, осторожно высушивают, затем тигель помещают в электрический муфель и прокаливают осадок при температуре не выше 650 °C в течение 25—30 мин до постоянной массы. После охлаждения в эксикаторе тигель с осадком взвешивают.

4.4. Обработка результатов

 4.4.1. Массовую долю фосфора (X) в процентах вычисляют по формуле

$$X = \frac{(m_1 - m_2) \cdot 0.00704 \cdot 100}{m}$$
,

где m₁ — масса осадка молибденовокислого свинца в пробе, г;

т₂ — масса осадка молибденовокислого свинца в контрольной пробе, г:

0,00704 — коэффициент пересчета массы фосфора, соответствующей 1 г молибденовокислого свинца;

т — масса навески, г.

4.4.2. Нормы точности и нормативы контроля точности определения массовой доли фосфора приведены в табл. 1.

информационные данные

 РАЗРАБОТАН И ВНЕСЕН Министерством черной металлургии СССР

исполнители

- Д. К. Нестеров, канд. техн. наук; С. И. Рудюк, канд. техн. наук; С. В. Спирина, канд. хим. наук (руководитель темы); В. Ф. Коваленко, канд. техн. наук; Н. Н. Гриценко, канд. хим. наук; Е. В. Подпружникова; Л. И. Березовая
- УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по стандартам от 25.08.88 № 3018
- Стандарт соответствует СТ СЭВ 485—75 в части гравиметрического метода анализа стали углеродистой и чугуна нелегированного
- 4. B3AMEH FOCT 22536.3-77
- 5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕН-ТЫ

Обозначение НТД, на который дана ссылка	Номер пункта, под- лункта	Обозначение НТД, на который дака ссылка	Номер пункта, под пункта
FOCT 83-79	2.2, 3.2, 4.2	ГОСТ 4461—77	2.2, 3.2, 4.2
FOCT 1027—67 FOCT 3117—78	4.2 4.2	FOCT 5456—79 FOCT 5962—67	2.2 2.2, 3.2
TOCT 3118-77	2.2, 3.2, 4.2	FOCT 6344—73	22, 32
FOCT 3760—79	2.2, 3.2, 4.2	FOCT 6563-75	2.2, 3.2
ΓΟCT 3765—78	2.2, 3.2, 4.2	FOCT 7298-79	2.2, 4.2
FOCT 3773—72	2.2, 4.2	FOCT 10484-78	2.2, 3.2, 4.2
FOCT 4107—78	3.2, 4.2	FOCT 11125-84	2.2, 3.2
FOCT 4147—74	4.2	ГОСТ 13610—79	2.2
FOCT 4160—74 FOCT 4165—78	3.2	FOCT 14261-77	2.2
ΓΟCT 4197—74	2.2 2.2, 3.2, 4.2	ГОСТ 14262—78 ГОСТ 18300—87	2.2
FOCT 4198—75	2.2, 0.2, 4.2	FOCT 19275-73	2.2, 3.2
FOCT 4204-77	2.2	FOCT 20490-75	2.2, 3.2, 4.2
ΓΟCT 4209—77	2.2	FOCT 22180-76	3.2
FOCT 4217-77	3.2, 4.2	ГОСТ 22536.0-87	1.1
FOCT 4328—77	3.2		