межгосударственный стандарт

Цементы

МЕТОД ОПРЕДЕЛЕНИЯ ТЕПЛОВЫДЕЛЕНИЯ

ГОСТ 310.5—88

Cements. Test method for heat of hydration

MKC 91,100,10 ΟΚΠ 57 3000

Дата введения 01.01.89

Настоящий стандарт устанавливает методы определения тепловыделения цемента и его мощности.

1. СРЕДСТВА ИЗМЕРЕНИЯ

1.1. Калориметр изотермический теплопроводящий «ЦЕМЕНТ ТГЦ 1М» по соответствующей нормативно-технической документации (НТД). Принцип действия и принципиальная схема калориметра приведены в приложении 1.

Допускается применение изотермических теплопроводящих калориметров других типов, прошедших государственные испытания по ГОСТ 8.001* или метрологическую аттестацию по ГОСТ 8.326*, при соблюдении требований п. 2.5 настоящего стандарта.

- 1.2. Весы лабораторные 3-го класса точности по ГОСТ 24104** с наибольшим пределом взвешивания 200 г.
 - 1.3. Термометр 1-й группы по ГОСТ 27544.
 - 1.4. Гигрометр по ГОСТ 12997.
- 1.5. Допускается применение других весов, термометров и гигрометров, не уступающих по метрологическим характеристикам средствам измерений, указанным в пп. 1.2—1.4.
 - Вода дистиллированная по ГОСТ 6709.

2. ПОДГОТОВКА И ПРОВЕДЕНИЕ ИСПЫТАНИЯ

- 2.1. Пробу цемента отбирают по ГОСТ 30515 и доставляют в лабораторию в плотно закрытой таре, защищающей цемент от увлажнения и загрязнения посторонними примесями. В рабочем журнале описывают вид и состояние тары.
- 2.2. Испытания следует проводить в помещениях температурой воздуха (20 ± 5) °С и относительной влажностью не менее 50 % и не более 80 %.
 - 2.3. Перед испытанием цемент и воду выдерживают до принятия ими температуры помещения.
- Место расположения калориметра не должно подвергаться ударам и вибрации, освещаться прямыми лучами солнца.
 - При проведении испытания должны быть соблюдены следующие требования:
 - водоцементное отношение В/Ц = 0,50 ± 0,01;
 - номинальная температура в термостате (20 ± 1) °C;
- допускаемый предел абсолютной погрешности определения тепловыделения не должен быть более 30 кДж/кг, а его мощности — более 1·10⁻³ кВт/кг.

На территории Российской Федерации действуют ПР 50.2.009—94.

^{**} С 1 июля 2002 г. введен в действие ГОСТ 24104—2001.

C. 2 FOCT 310.5-88

- Измерения на изотермическом теплопроводящем калориметре выполняют в соответствии с указаниями эксплуатационной документации калориметра в течение 72 ч (3 сут).
- Тепловыделение цемента в возрасте 7 сут определяют методом экстраполяции экспериментальных данных, полученных в возрасте 3 сут, согласно приложению 2.

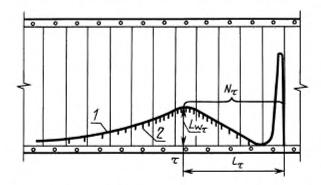
3. ОБРАБОТКА РЕЗУЛЬТАТОВ

3.1. Удельную мощность тепловыделения (W_{τ}) в момент времени (τ) в киловаттах на килограмм определяют по формуле

$$W_{\tau} = EL_{W}$$
, (1)

где E — цена деления диаграммной ленты, к $B\tau/(\kappa \Gamma \cdot \text{дел.})$;

 L_W — значение отклонения пера самописца, дел.


Удельное тепловыделение (q_{τ}) ко времени (τ) в килоджоулях на килограмм определяют по формуле

$$q_{\tau} = AN_{\tau}$$
, (2)

где А — цена одного сброса пера самописца, кДж/кг;

 N_{τ} — число сбросов на ленте самописца.

- 3.2. Цену одного деления диаграммной ленты самописца (Е) и цену одного сброса пера самописца (А) устанавливают при наладке калориметра в соответствии с НТД.
- 3.3. Значение отклонения пера самописца ($L_{W_{\tau}}$) и число сбросов (N_{τ}) определяют по диаграммной ленте самописца, вид которой приведен на черт. 1.

I — кривая отклонения пера самописца; 2 — сброс пера самописца

Черт. 1

Задавшись значением требуемого времени гидратации (τ) в часах, вычисляют соответствующую длину диаграммной ленты (l_{τ}) в миллиметрах с момента начала измерения по формуле

$$I_r = v\tau$$
, (3)

где v — скорость протяжки диаграммной ленты, мм/ч.

Делают соответствующую отметку (τ) и измеряют значение отклонения пера самописца ($L_{W_{\tau}}$) в делениях диаграммной ленты у этой отметки.

Подсчитывают число сбросов (N_{τ}) самописца к моменту времени (τ).

- Примеры расчета и таблицы результатов вычислений приведены в приложении 3.
- Результаты измерений тепловыделения цемента и его мощности оформляют протоколом согласно приложению 4.

4. ПОВЕРКА СРЕДСТВ ИЗМЕРЕНИЙ

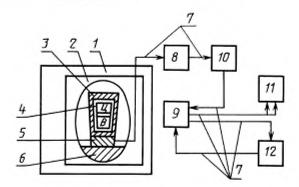
4.1. Поверку изотермического калориметра «ЦЕМЕНТ ТГЦ 1М» проводят согласно действующим методическим указаниям при помощи стандартных образцов теплоты гидратации цемента.

Поверку изотермических теплопроводящих калориметров других типов, проводят согласно действующим на них методическим указаниям в том же порядке.

Периодичность поверки калориметров — один раз в два года.

ПРИЛОЖЕНИЕ 1 Справочное

ПРИНЦИП ДЕЙСТВИЯ И ПРИНЦИПИАЛЬНАЯ СХЕМА КАЛОРИМЕТРА «ЦЕМЕНТ ТГЦ 1М»


Действие калориметра основано на возникновении на входящих в его состав тепломерах электронапряжения, обусловленного тепловым потоком, направленным от камеры с ячейками с гидратирующимся цементом через тепломеры к массивному теплоотводу.

Сигнал напряжения от тепломеров через коммутатор, предварительный усилитель и калибратор поступает на вход самописца и одновременно на вход интегратора дискретного типа.

Возникающее на тепломерах напряжение пропорционально мощности тепловыделения цемента при гидратации и характеризуется значением величины отклонения пера самописца от нулевой линии.

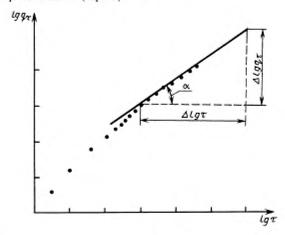
Тепловыделение цемента определяют после интегрирования мощности тепловыделения по времени, которое автоматически производится интегратором. После выделения цементом определенного количества теплоты интегратор посылает выходной импулье на вход самописца, который регистрирует его кратковременным сбросом пера.

Схема калориметра приведена на черт. 2.

I— термостат; 2— калориметрический блок; 3— камера; 4— вчейка; 5— гепломер; 6— геплоотвод; 7— соединительные кабели; 8— коммутатор; 9— калибратор; 10— предварительный усилитель; 11— самописец; 12— интегратор

Черт. 2

ЭКСТРАПОЛЯЦИЯ ЭКСПЕРИМЕНТАЛЬНЫХ ДАННЫХ


Экстраполяцию результатов измерения от 3 до 7 сут (от 72 до 168 ч) выполняют следующим образом. Определяют значения тепловыделения цемента от 2 до 72 ч и десятичные логарифмы значений времени и тепловыделения до третьего знака после запятой.

Полученные результаты оформляют в виде таблицы.

Пример

1, 4	lg t	q_z , $\kappa A = /\kappa r$	$\lg q_{_{1}}$
2 4 6	0,301 0,602 0,778	13 16 20	1,113 1,204 1,301
72	1,857	205	2,312

По данным таблицы в масштабе «одна единица третьего знака после запятой значения десятичного логарифма в 1 мм» строят график зависимости $\lg q_{\tau} = f(\lg \tau)$, начиная от $\tau = 72$ ч в сторону уменьшения, пока график не перестает быть прямой линией (черт. 3).

Черт. 3

Определяют значение коэффициента (k) как тангенс угла наклона (α) прямодинейного участка. Значение (k) округляют до трех значащих цифр.

Значение тепловыделения цемента (q_{τ_j}) в килоджоулях на килограмм ко времени экстраполяции (τ_j) в часах определяют по формуле

$$q_{\tau_0} = q_{72} \left(\frac{\tau_s}{72}\right)^k$$
, (4)

где q_{72} — экспериментальное значение тепловыделения ко времени 72 ч, кДж/кг.

 Π р и м е р. По экспериментальным данным при $\tau=72$ ч получено значение $q_{72}=205$ кДж/кг. В логарифметических координатах строят график, по которому определяют $\Delta \lg q_{\tau}=0,420$; $\Delta \lg \tau=0,631$ и k=0,420/0,631=0,668. Тогда ко времени $\tau_{\alpha}=168$ ч по формуле (4) получают

$$q_{168} = 205 \cdot (168.72)^{0.668} = 361 \text{ кДж/кг.}$$

 Π р и м е ч а н и е. Если график зависимости $\lg q_{\rm t} = f(\lg \tau)$ не прямолинеен, то экстраполяцию не осуществляют, экспериментальное определение продолжают до заданного времени. Максимальное время определения 168 ч.

ПРИЛОЖЕНИЕ 3 Справочное

ПРИМЕР РАСЧЕТА ТЕПЛОВЫДЕЛЕНИЯ ЦЕМЕНТА И ЕГО МОЩНОСТИ

При скорости протяжки диаграммной ленты самописца v = 20 мм/9, цене ее деления $E = 1,25 \cdot 10^{-4}$ кВт (кг-дел.) и цене одного сброса пера самописца A=1,0 кДж/кг для времени гидратации $\tau=12$ ч вычисляем соответствующую длину диаграммной ленты $I_{12} = 20 \cdot 12 = 240$ мм.

Отмечаем на ленте отрезок $I_{12}=240$ мм. Пусть значение отклонения пера самописца $L_{W_{12}}=41$ дел. и число его сбросов $N_{12}=38$, тогда:

$$W_{12} = 1,25 \cdot 10^{-4} \cdot 41 = 5 \cdot 10^{-3} \text{ кВт/кг};$$
 $q_{12} = 1,0 \cdot 38 = 38 \text{ кДж/кг}.$

Полученные результаты оформляют в виде таблицы.

т, ч	$W_{τ^*}$ κΒτ/κτ	q ₁ , кДж/кг
2		
4		
6		
72		

ПРИЛОЖЕНИЕ 4 Рекомендуемое

ФОРМА ПРОТОКОЛА ОФОРМЛЕНИЯ РЕЗУЛЬТАТОВ ИЗМЕРЕНИЙ

		Л №	
		ния цемента по ГОСТ 310.5—88 20г.	
1,	Наименование и адрес организации (лабора		
2.	Наименование и адрес предприятия — изго	товителя цемента	
3.	Наименование		цемента
и номер	партии		
4.	Дата выпуска партии		
5.	Вид и состояние тары, в которой доставлена	проба испытуемого цемента	
6.	Заводской номер и год выпуска калориметра	а «ЦЕМЕНТ ТГЦ 1М»	
7.	Результаты измерений		

Подписи ответственного лица и лица, проведшего определение.

t, cyr 1 2 3

 q_z , кДж/кг

 W_{\star} , $\kappa B\tau/\kappa r$

С. 6 ГОСТ 310.5-88

М. П.

ИНФОРМАЦИОННЫЕ ДАННЫЕ

- 1. РАЗРАБОТАН И ВНЕСЕН Министерством промышленности строительных материалов СССР
- УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного строительного комитета СССР от 22.04.88 № 65
- 3. Авторское свидетельство № 893247 с приоритетом от 23.11.79, авторское свидетельство № 1229606 с приоритетом от 05.04.85
- 4. B3AMEH ΓΟCT 310.5-80

5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер пункта	
ΓΟCT 8.001—80	1.1	
ΓΟCT 8.326—89	1.1	
ΓΟCT 6709—72	1.6	
ΓΟCT 12997—84	1.4	
ΓΟCT 24104—88	1.2	
ΓΟCT 27544—87	1.3	
ΓΟCT 30515—97	2.1	

6. ПЕРЕИЗДАНИЕ. Апрель 2003 г.