ГОСУДАРСТВЕННЫЯ СТАНДАРТ СОЮЗА ССР

ниобии

Спектральный метод определения тантала

Niobium. Spectral method for the determination of tantalum ΓΟCT 18385.7-89

OKCTY 1709

Срок действия с 01.01.91 до 01.01.96

Несоблюдение стандарта преследуется по закону

Настоящий стандарт распространяется на спектральный метод определения массовой доли тантала в слитках ниобня от 0,05 до 1%.

Метод основан на зависимости интенсивности спектральной линии тантала от его массовой доли в образце при возбуждении спектра в дуге переменного тока (в режиме низковольтная искра).

1. ОБЩИЕ ТРЕБОВАНИЯ

1.1. Общие требования к методу анализа — по ГОСТ 18385.0.

2. АППАРАТУРА, МАТЕРИАЛЫ, РЕАКТИВЫ И РАСТВОРЫ

Спектрограф кварцевый типа ИСП-30 с трехлинзовой системой. Генератор дуговой типа ДГ-2, СТУ-81—14—62 или ИВС-28 в искровом режиме (низковольтная искра). Сила тока в первичной обмотке высоковольтного трансформатора в схеме активизатора 0,1 A, сопротивление 250 Ом.

Сила тока разряда в аналитическом промежутке 1 А

Аналитический промежуток — 1,5 мм.

Промежуток рабочего разрядника — 0,5 мм.

Микрофотометр типа МФ-2.

Спектропроектор типа СПП-2.

Весы аналитические.

Весы торсионные.

Весы технические.

Электропечь типа СНОЛ-1,6.2.0.0.8/9-М1.

Шкаф сушильный электрический круглый типа 23—151.00.00. 000 ПС.

Шкаф сушильный.

Секундомер по ГОСТ 5072.

Термометр лабораторный.

Цилиндры мерные.

Мензурки мерные.

Колбы мерные.

Ступка и пестик яшмовые или агатовые.

Боке из органического стекла.

Чашки платиновые № 115-9 по ГОСТ 6563.

Лампа инфракрасная типа ИК 3—500 с регулятором напряжения типа РН 0—250—0,5.

Станок для заточки графитовых электродов.

Электроды графитовые дли спектрального анализа марки ОСЧ 7—3 с диаметром 6 мм, с каналом глубиной 1 мм и диаметром 4.1 мм (нижине).

Электроды графитовые для спектрального анализа марки ОСЧ 7—3, диаметром 6 мм, высотой заточенной части 5—7 мм и диаметром 4 мм (верхние).

Графитовый порошок марки ОСЧ 7-4.

Пресс масляный, гидравлический давления в 200 кг/см2.

Прессформа (диаметром 4,0 мм, глубиной 4,0-5,0).

Батист для чистки оптики.

Фланель для обтирки приборов и генераторов.

Вата минеральная по ГОСТ 4640.

Спирт этиловый ректификованцый технический по ГОСТ 18300.

Ниобия пятнокись, спектрально чистая.

Тантала нятнокись высокой чистоты, содержащая не менее 99,9% основного вещества.

Кислота соляная по ГОСТ 3118.

Аммоний хловисты" по ГОСТ 3773.

Натрий серповатисловьедый (гипосульфит) по ГОСТ 244.

Пластинки фотографические 9×12, тила II или аналогичные, обеспечивающие нормальные почернения аналитических линий.

Проявитель по ГОСТ 10691.1.

Фиксаж; навеску серноватистокислого натрия массой 300 г и навеску хлористого аммония массой 20 г растворяют соответственно в 700 и 200 см³ воды, сливают полученные растворы вместе и доводят объем водой до 1 дм³.

з. ПОДГОГОВКА К АНАЛИЗУ

3.1. Приготовление образцов сравнения (ОС)

3.1.1. Приготовление основного образца сравнения (ООС), содержащего 10% тантала (в расчете на массовую долю тантала в смеси металлических ниобия, тантала) на основе пятиокиси ниобия.

Навеску пятнокиси ниобия массой 1,2874 г и навеску пятнокиси тантала массой 0,1221 г перетирают в агатовой или ящмовой ступке под слоем спирта в течение 1—1,5 ч (расход спирта на одну операцию 15 см²). Смесь просушивают под инфракрасной лампой до постоянной массы.

3.1.2 Образцы сравнения (ОС) готовят из основного образца сравнения последовательным разбавлением пятиокисью ниобия (основа), не содержащей тантала, перетиранием смеси в плексигласовой ступке под слоем спирта в течение 1,5—2 ч и просущиванием под инфракрасной лампой до постоянной массы (расход спирта на одну операцию 70 см3).

Массовая доля тантала в образце сравнения и вводимые в смесь навески пятиокиси ниобия (основа) и разбавляемого образца указаны в табл. 1.

Таблипа 1

Обозначение образца	Массовия доля тантала, %	Масса навески, г	
		основы	рязбавляемого образца
OCI	1,00	9,000	1,000 (OOC)
OC2	0,50	4,500	4,500 (OC1)
OC3	0,25	4,000	4,000 (OC2)
OC4	0,10	4,500	3,000 (OC3)
OC5	0.05	2,500	2,500 (OC4)

Образцы сравнения хранят в полиэтиленовых банках с крышками.

4. ПРОВЕДЕНИЕ АНАЛИЗА

Стружку ниобия промывают соляной кислотой в стеклянном стакане при нагревании Кислоту сливают, промывают стружку дистиллированной водой и спиртом. Промытую стружку помещают в платиновую чашку и прокаливают в муфеле в течение 4 ч до постоянной массы, постепенно повышая температуру (850±50°) С. Из 1 г металлического ниобия (стружка) должно быть получено 1,430 г пятиокиси ниобия.

Полученную пятиокись тщательно перемешивают, отбирают от нее навеску массой 30 мг и перетирают в яшмовой или агатовой ступке с навеской массой 90 мг очищенного графитового порошка в течение 5 мин. Подготовленную пробу переносят в прессформу, прессуют при давлении 9,8 · 107 Па. Полученную таблетку помещают в кратернижнего угольного электрода, добиваясь хорошего контакта между угольным электродом и таблеткой, устанавливают в электрододержатель штатива; верхним электродом является угольный стержень днаметром 4 мм и высотой заточки 7 мм, между которыми зажигают низковольтный искровой разряд.

Сила тока разряда в аналитическом промежутке — 1 А.

Межэлектродное расстояние — 1,5 мм.

Вновь отпрессованные таблетки подвергают предварительному

обыскриванию в течение 10 с.

Время экспозиции (60—90 с) выбирают в зависимости от характеристики прибора и сорта применяемых фотопластинок таким образом, чтобы почернения аналитических линий находились в области нормальных почернений для всего интервала определяемых концентраций.

Те же операции, за исключением перевода в пятиокись, выполняют с каждым из рабочих образцов сравнения.

5. ОБРАБОТКА РЕЗУЛЬТАТОВ

5.1. В каждой из спектрограмм фотометрированием находят почернения аналитических линий определяемого элемента (тантал) $(S_{r+\phi})$, линии элемента сравнения (ниобий) $(S_{Nb+\phi})$ (табл. 2) и фона рядом с линиями (S_{ϕ}) и вычисляют разность почернений для аналитической линии $(S_{rs+\phi}-S_{\phi})$ и линии элемента сравнения $(S_{Nb+\phi}-S_{\phi})$, затем переходят к соответствующим значениям логарифмов относительной интенсивности

$$\lg \frac{I_{Ta}}{I_{Nb}} = \lg I_{Ta} - \lg I_{Nb},$$

по таблицам, приведенным в приложении к ГОСТ 13637.1.

Таблица 2

Опредсдяеный элемент	Дляна волим пиалити- ческой линии, им	Ливия сравцения, пи
Тантал	240,063	Наобий — 240,103

По результатам фотометрирования спектров образцов сравнения строят градунровочный график в координатах

$$\lg \frac{I_{Ta}}{I_{Nb}} - \lg C$$
,

где lgC — логарифм массовой доли определяемого элемента в образце сравнения;

$$\lg rac{I_{\mathrm{Ta}}}{I_{\mathrm{Nb}}}$$
 — логарифм относительной интенсивности аналитиче-

ской линии и линии сравнения,

Массовую долю тантала в образце ниобия находят по результатам фотометрирования спектров при помощи градуировочного графика.

Разность наибольшего и наименьшего из результатов трех параллельных определений не должна превышать значений абсолютных допускаемых расхождений, указанных в табл. 3.

Таблица 3

Определяеный элемент	Массовая доля, 🖔	Абсолютное допускаемое расхождение, %
Тантэл	0,05 0,10 0,20 0,60	0,03 0,05 0,10 0,20

5.2. Проверка правильности результатов

Один из анализируемых образцов проверяемой серии переводят в пятнокись (см. разд. 4). К навеске пятиокиси ниобня массой 0,5 г добавляют навеску массой 0,5 г второго образца сравнения (для первоначально найденной массовой доли тантала в анализируемом образце, равной 0,25% или меньшей) или навеску массой 0,5 г первого образца сравнения (для массовой доли тантала в анализируемом образце 0,25—0,8%). Смесь тщательно перетирают в плексигласовой ступке под слоем спирта (расход спирта на одну операцию 3 см³), высушивают под инфракрасной лампой и анализируют по разд. 4 и 5.

Анализы правильные, если для первой смеси образца и добавки, за вычетом половины первоначально найденной массовой доли в образце, получено (0.25 ± 0.1) %, а для второй смеси (0.5 ± 0.14) % тантала.

Если результаты выходят за указанные пределы, то контроль правильности результатов анализов повторяют, увеличивая число параллельных определений до шести. Полученные средние значения должны быть для первой смеси (0.25 ± 0.07) %, для второй смеси $-(0.5\pm0.1)$ %.

информационные данные

- РАЗРАБОТАН И ВНЕСЕН Министерством металлургия СССР РАЗРАБОТЧИКИ
 - А. В. Елютин, Ю. А. Карпов, Л. Н. Филимонов, Э. С. Бляшова, А. С. Терехова, В. Г. Ашхотов
- УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по управлению качеством продукции и стандартам от 11.12.89 № 3644
- 3. ВВЕДЕН ВПЕРВЫЕ
- 4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕН-ТЫ

Обозночение НТД, на который дана ссылка	Номер пункта	
ГОСТ 24423	Разд. 2	
FCCT 3118-77	Разд. 2	
FOCT 3773-72	Разд. 2	
ГОСТ 4640—84	Разд. 2	
ГОСТ 6563—75	Разд. 2	
FOCT 10691.1-84	Разд. 2	
FOCT 18300—87	Разд. 2	
FOCT 18385.0—79	1.1	

Редактор И. В. Виноградская Технический редактор Г. А. Төрөбинкина Корректор Р. Н. Корчагина

Ордена «Зняк Почета» Издательство стандартов, 12357, Москва, ГСП, Новопресиенский вер. 3 Тип. «Московский вечатник». Москва, Лядив вер., 6. Зак. 1476