СПЛАВЫ АЛЮМИНИЕВЫЕ ЛИТЕЙНЫЕ И ДЕФОРМИРУЕМЫЕ

Метод определения натрия

Издание официальное

Предисловие

1 РАЗРАБОТАН ОАО «Всероссийский институт легких сплавов» (ОАО ВИЛС), Межгосударственным техническим комитетом по стандартизации МТК 297 «Материалы и полуфабрикаты из легких сплавов»

ВНЕСЕН Госстандартом России

2 ПРИНЯТ Межгосударственным Советом по стандартизации, метрологии и сертификации (протокол № 16—99 от 8 октября 1999 г.)

За принятие проголосовали:

Наименование государства	Наименование национального органа по стандартизаци	
Азербайджанская Республика	Азгосстандарт	
Республика Армения	Армгосстандарт	
Республика Беларусь	Госстандарт Беларуси	
Республика Казахстан	Госстандарт Республики Казахстан	
Киргизская Республика	Киргизстандарт	
Республика Молдова	Молдовастандарт	
Российская Федерация	Госстандарт России	
Республика Таджикистан	Таджикгосстандарт	
Туркменистан	Главная государственная инспекция Туркменистана	
Украина	Госстандарт Украины	

³ Постановлением Государственного комитета Российской Федерации по стандартизации и метрологии от 18 февраля 2000 г. № 41-ст межгосударственный стандарт ГОСТ 11739.15—99 введен в действие непосредственно в качестве государственного стандарта Российской Федерации с 1 сентября 2000 г.

4 B3AMEH FOCT 11739.15-82

ГОСТ 11739.15-99

Содержание

I Область применения	. 1
2 Нормативные ссылки	. 1
3 Общие требования	. 1
4 Сущность метода	. 1
5 Аппаратура, реактивы и растворы	. 2
5 Проведение анализа	. 2
7 Обработка результатов	. :

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

СПЛАВЫ АЛЮМИНИЕВЫЕ ЛИТЕЙНЫЕ И ДЕФОРМИРУЕМЫЕ

Метод определения натрия

Aluminium casting and wrought alloys. Method for determination of sodium

Дата введения 2000-09-01

1 Область применения

Настоящий стандарт устанавливает пламенно-фотометрический метод определения натрия в алюминиевых литейных и деформируемых сплавах при массовой доле натрия от 0,0002 % до 0,05 %.

2 Нормативные ссылки

В настоящем стандарте использованы ссылки на следующие стандарты:

ГОСТ 3118-77 Кислота соляная. Технические условия

ГОСТ 4038-79 Никель (II) хлорид 6-водный. Технические условия

ГОСТ 4204-77 Кислота серная. Технические условия

ГОСТ 4233-77 Натрий хлористый. Технические условия

ГОСТ 4461-77 Кислота азотная. Технические условия

ГОСТ 5457-75 Ацетилен растворенный и газообразный технический. Технические условия

ГОСТ 10484—78 Кислота фтористоводородная. Технические условия

ГОСТ 10929-76 Водорода пероксид. Технические условия

ГОСТ 11069-74 Алюминий первичный. Марки

ГОСТ 14261-77 Кислота соляная особой чистоты. Технические условия

ГОСТ 25086-87 Цветные металлы и их сплавы. Общие требования к методам анализа

3 Общие требования

- Общие требования к методам анализа по ГОСТ 25086 с дополнением.
- 3.1.1 За результат анализа принимают среднее арифметическое результатов двух параллельных определений.

4 Сущность метода

Метод основан на растворении пробы в соляной кислоте и последующем измерении интенсивности излучения натрия при длине волны 589 нм в пламени ацетилен-воздух.

5 Аппаратура, реактивы и растворы

Фотометр пламенный или спектрофотометр атомно-абсорбционный, работающий в режиме эмиссии.

Шкаф сушильный с терморегулятором.

Кварцевый аппарат для перегонки.

Кварцевые колбы.

Вода, дважды перегнанная в кварцевом аппарате (тридистиллят для приготовления растворов и проведения анализа): хранят в полиэтиленовой посуде.

Ацетилен по ГОСТ 5457, очищенный серной кислотой.

Кислота серная по ГОСТ 4204 плотностью 1,84 г/см3.

Кислота соляная по ГОСТ 14261 или по ГОСТ 3118, перегнанная в кварцевом аппарате, плотностью 1,19 г/ см³, растворы 1:1 и 1:99.

Кислота фтористоводородная по ГОСТ 10484.

Кислота азотная по ГОСТ 4461 плотностью 1,35-1,40 г/см³.

Водорода пероксид по ГОСТ 10929.

Никель (II) хлорид 6-водный по ГОСТ 4038, раствор 2 г/дм³.

Алюминий по ГОСТ 11069 марки А999.

Раствор алюминия 50 г/дм³: 25 г алюминия помещают в кварцевую колбу вместимостью 600 см³, добавляют 50 см³ воды, а затем небольшими порциями 400 см³ раствора соляной кислоты 1:1, растворяют при нагревании, добавляя 1 см³ раствора хлорида никеля (II). Раствор охлаждают до комнатной температуры, переводят в мерную колбу вместимостью 500 см³, доливают водой до метки и перемешивают. Раствор хранят в полиэтиленовой посуде.

Натрий хлористый по ГОСТ 4233.

Стандартные растворы натрия.

Раствор А: 2,5420 г хлористого натрия, предварительно высушенного при температуре 105—110 °C, растворяют в 50 см³ воды, переводят раствор в мерную колбу вместимостью 1000 см³, доливают водой до метки и перемешивают.

1 см3 раствора содержит 0,001 г натрия.

Раствор Б: 10 см³ стандартного раствора А переносят в мерную колбу вместимостью 100 см³, доливают водой до метки и перемещивают.

1 см³ раствора содержит 0,0001 г натрия.

Раствор В: 10 см³ стандартного раствора Б переносят в мерную колбу вместимостью 100 см³, доливают водой до метки и перемешивают.

1 см³ раствора содержит 0,00001 г натрия.

Растворы Б и В готовят непосредственно перед применением.

6 Проведение анализа

6.1 Навеску пробы массой 1 г помещают в коническую кварцевую колбу вместимостью 250 см³, снабженную обратным кварцевым холодильником, добавляют порциями 20 см³ раствора соляной кислоты 1:1 и умеренно нагревают до окончания растворения. Добавляют 3—5 капель пероксида водорода и кипятят в течение 3 мин. Раствор охлаждают до комнатной температуры, переводят в мерную колбу вместимостью 100 см³, доливают водой до метки и перемещивают.

6.2 При массовой доле кремния свыше 1 % после окончания растворения по 6.1 раствор фильтруют через фильтр средней плотности («белая лента») в мерную колбу вместимостью 100 см³. Осадок на фильтре промывают 3—4 раза горячим раствором соляной кислоты 1:99 порциями по 10 см³ (основной раствор).

Фильтр с осадком помещают в платиновый тигель, высушивают, озоляют, не допуская воспламенения, и прокаливают при температуре 500—600 °C в течение 3 мин. После охлаждения к содержимому тигля добавляют пять капель серной кислоты, 5 см³ фтористоводородной кислоты и по каплям азотную кислоту (приблизительно 1 см³) до получения прозрачного раствора. Далее раствор упаривают досуха, после охлаждения остаток смачивают 2—3 см³ воды и растворяют в 5 см³ раствора соляной кислоты 1:1 при умеренном нагревании.

Раствор охлаждают, присоединяют к основному раствору в мерной колбе вместимостью 100 см³, доливают водой до метки и перемешивают. 6.3 Раствор контрольного опыта готовят в соответствии с 6.1 и 6.2 не менее чем в двух параллельных определениях со всеми реактивами, используемыми в ходе анализа.

6.4 Построение градуировочных графиков

6.4.1 При массовой доле натрия от 0,0002 % до 0,001 %

В семь мерных колб вместимостью 100 см³ каждая помещают по 20 см³ раствора алюминия, в пять из них отмеряют 0,2; 0,4; 0,6; 0,8; 1,0 см³ стандартного раствора В, что соответствует 0,000002; 0,000004; 0,000006; 0,000008; 0,00001 г натрия.

6.4.2 При массовой доле натрия свыше 0,001 % до 0,005 %

В семь мерных колб вместимостью 100 см^3 каждая помещают по 20 см^3 раствора алюминия, в пять из них отмеряют 1,0; 2,0; 3,0; 4,0; 5,0 см 3 стандартного раствора B, что соответствует 0,00001; 0,00002; 0,00003; 0,00004; 0,00005 г натрия.

6.4.3 При массовой доле натрия свыше 0,005 % до 0,05 %

В восемь мерных колб вместимостью 100 см^3 каждая помещают по 20 см^3 раствора алюминия, в шесть из них отмеряют 0.5; 1.0; 2.0; 3.0; 4.0; 5.0 см^3 стандартного раствора 6, что соответствует 0.00005; 0.0001; 0.0002; 0.0003; 0.0004; 0.0005 г натрия.

6.4.4 Растворы в колбах, полученные по 6.4.1—6.4.3, доливают водой до метки и перемешивают. Растворы, не содержащие натрия, служат растворами контрольного опыта при построении градуировочных графиков.

6.5 Раствор пробы, растворы контрольного опыта и растворы для построения градуировочных графиков распыляют в пламя ацетилен-воздух и измеряют интенсивность излучения натрия при длине волны 589 нм.

По полученным значениям интенсивности излучения и соответствующим им массовым концентрациям натрия строят градуировочный график.

Массовую концентрацию натрия в растворе пробы и растворе контрольного опыта определяют по градуировочному графику.

7 Обработка результатов

7.1 Массовую долю натрия X, %, вычисляют по формуле

$$X = \frac{(C_1 - C_2) V}{m} \quad 100, \tag{1}$$

где C₁— массовая концентрация натрия в растворе пробы, найденная по градуировочному графику, г/см³;

 C_2 — массовая концентрация натрия в растворе контрольного опыта, найденная по градуировочному графику, г/см³;

V — объем раствора пробы, см³;

т — масса навески пробы, г.

7.2 Расхождения результатов не должны превышать значений, указанных в таблице 1.

Таблица 1

В процентах

	Абсолютное допускаемое расхождение	
Массовая доля натрия	результатов параллельных определений	результатов анализа
От 0,00020 до 0,00050 включ.	0,00008	0,00010
Св. 0,0005 » 0,0010 »	0,0001	0,0002
» 0,0010 » 0,0020 »	0,0003	0,0005
» 0,0020 » 0,0050 »	0,0006	0,0009
» 0,005 » 0,010 »	0,001	0,002
» 0,010 » 0,025 »	0,003	0,004
» 0.025 » 0.050 »	0,005	0.007

УДК 669.715.001.4:006.354

MKC 77.120.10

B59

OKCTY 1709

Ключевые слова: сплавы алюминиевые, метод определения натрия, реактивы, растворы, анализ

Редактор Л.И. Нахимова
Технический редактор Н.С. Гришанова
Корректор В.И. Варенцова
Компьютерная верстка Е.И. Мартемычновой

Изд. лиц. № 021007 от 10.08.95. Сдано в набор 20.04.2000. Подписано в печать 30.05.2000, Усл. печ. л. 0,93. Уч. мэд. л. 0,47. Тираж 299 экз. С 5218. Зак. 503.