АЛЮМИНИЙ

Методы определения галлия

ГОСТ 12697.13—90

Aluminium.

Methods for the determination of gallium

МКС 77.120.10 ОКСТУ 1709

Дата введения 01.07.91

Настоящий стандарт устанавливает методы определения галлия в алюминии: фотометрический при массовой доле галлия от 0,001 до 0,1 % и атомно-абсорбционный при массовой доле галлия от 0,01 до 0.1 %.

1. ОБЩИЕ ТРЕБОВАНИЯ

Общие требования к методам анализа — по ГОСТ 12697.1.

2. ФОТОМЕТРИЧЕСКИЙ МЕТОД

2.1. Сущность метода

Метод основан на растворении пробы в соляной кислоте, образовании сине-зеленого ионного ассоциата галлия с малахитовым зеленым в солянокислой среде с концентрацией 6,0—6,5 моль/дм³, экстракции ионного ассоциата бензолом и последующем измерении оптической плотности раствора при длине волны 635 нм.

2.2. Аппаратура, реактивы и растворы

Фотоэлектроколориметр типа ФЭК-56M, ФЭК-60, КФК или спектрофотометр типа СФ-16, СФ-26 или аналогичного типа.

Кислота соляная по ГОСТ 3118, разбавленная 1:1 и 1:3.

Никель (II) хлорид по ГОСТ 4038, раствор с массовой долей 0.2 %.

Титан треххлористый.

Титан губчатый марки ТГ-100 по ГОСТ 17746.

Раствор хлорида титана: 4,65 г титана помещают в коническую колбу вместимостью 250 см³ и растворяют в 100 см³ соляной кислоты (1:1) при умеренном нагревании. Раствор охлаждают, переливают в мерную колбу вместимостью 100 см³, доливают до метки соляной кислотой (1:1) и перемешивают. Хранят раствор в темном месте в плотно закрытой колбе или сосуде из темного стекла.

Малахитовый зеленый (тетраметил-4,4'-диамино-трифенил-карбонил-хлорид), раствор 20 г/дм³: 2 г мелко растертого малахитового зеленого растворяют в 100 см³ соляной кислоты (1:3) и раствор фильтруют. Раствор хранят в сосуде из темного стекла.

61

Бензол по ГОСТ 5955.

Натрий сернокислый по ГОСТ 4166.

Галлия (III) оксид (Ga.O.).

Галлий технический по ГОСТ 12797.

Стандартные растворы галлия.

8 - 1475

C. 2 FOCT 12697.13-90

Раствор А: 1,0000 г галлия или 1,3442 г предварительно прокаленного при температуре 300 °C и охлажденного в эксикаторе оксида галлия (ПП) растворяют в 50 см³ раствора соляной кислоты (1:1), раствор переносят в мерную колбу вместимостью 1000 см³, доливают до метки водой и перемешивают.

1 см³ раствора А содержит 1,0 мг галлия.

Раствор Б: 5,0 см³ раствора А помещают в мерную колбу вместимостью 1000 см³, доливают до метки соляной кислотой (1:1). Раствор готовят перед употреблением.

1 см³ раствора Б содержит 0,005 мг галлия.

Раствор В: 20,0 см³ раствора Б помещают в мерную колбу вместимостью 100 см³, доливают до метки соляной кислотой (1:1) и перемешивают.

1 см3 раствора В содержит 0,001 мг галлия.

2.3. Проведение анализа

2.3.1. Навеску пробы массой 1 г помещают в стакан вместимостью 400 см³, добавляют 30 см³ соляной кислоты (1:1) и накрывают часовым стеклом. После прекращения бурной реакции стакан с раствором осторожно нагревают до полного растворения пробы, затем обмывают часовое стекло небольшим количеством воды в стакан и раствор упаривают до влажных солей. После охлаждения к остатку добавляют соляную кислоту (1:1) в количестве согласно табл. 1 в зависимости от массовой доли галлия и нагревают до получения прозрачного раствора. Раствор охлаждают, переносят в мерную колбу вместимостью согласно табл. 1, ополаскивая стакан соляной кислотой (1:1), затем этим же раствором кислоты доливают до метки и перемешивают.

При необходимости раствор пробы фильтруют через сухой фильтр средней плотности в сухой стакан, отбрасывая первые порции фильтрата. Из раствора пробы или ее фильтрата отбирают аликвотную часть 5 см³ и переносят в сухую делительную воронку вместимостью 100 см³.

Таблица 1

Массовая доля галлия, %	Объем раствора соляной кислоты, разбавленной 1:1, см ²	Вместимость мерной колбы, см ³
От 0,001 до 0,005 включ.	25	50
CB, 0,005 » 0,030 »	50	100
» 0,030 » 0,100 »	50	250

К раствору в делительной воронке добавляют 1 см³ соляной кислоты, 0,5 см³ раствора хлорида титана (III), встряхивают в течение 1 мин, затем оставляют на 2—3 мин. К раствору добавляют 2,0 см³ раствора малахитового зеленого, перемешивают, добавляют 20,0 см³ бензола и встряхивают в течение 2 мин. После расслоения водную фазу отбрасывают, а органическую фазу переносят в сухую мерную колбу вместимостью 25 см³, доливают до метки бензолом и перемешивают, затем добавляют 0,2 г сульфата натрия и встряхивают до получения прозрачного раствора.

Измеряют оптическую плотность экстракта при длине волны 635 нм. Раствором сравнения служит экстракт контрольного опыта, одновременно проведенный через все стадии анализа.

Массу гадлия в растворе пробы определяют по градуировочному графику.

2.3.2. Для построения градуировочного графика в пять из шести делительных воронок вместимостью 100 см³ помещают при массовой доле галлия менее 0,005 % 1,0; 2,0; 3,0; 4,0 и 5,0 см⁵ стандартного раствора В, что соответствует 0,001; 0,002; 0,003; 0,004 и 0,005 мг галлия, при массовой доле галлия более 0,005 % 0,50; 1,0; 2,0; 3,0 и 4,0 см³ стандартного раствора Б, что соответствует 0,0025; 0,005; 0,010; 0,015 и 0,020 мг галлия. Во все делительные воронки добавляют такое количество соляной кислоты (1:1), чтобы объем раствора в воронках стал 5 см³, далее поступают согласно п. 2.3.1. Раствор шестой колбы, не содержащий стандартного раствора галлия, служит раствором сравнения при построении градуировочного графика.

По полученным значениям оптической плотности растворов и соответствующим им массам галлия строят градуировочный график.

2.4. Обработка результатов

2.4.1. массовую долю галлия (Х) в процентах вычисляют по формуле

$$X = \frac{m_{\rm i}}{m \cdot 1000} \cdot 100 \,,$$

где m₁ — масса галлия в растворе пробы, найденная по градуировочному графику, мг;

т — масса навески пробы, соответствующая аликвотной части раствора пробы, г.

 2.4.2. Абсолютные допускаемые расхождения результатов параллельных определений не должны превышать значений, приведенных в табл. 2.

Таблипа 2

	Массовая доля галлия, %	Абсолютное допускаемое расхождение, %		
Macconax goax labina, %		сходимости	воспроизводимости	
Or	0,0010 до 0,0020 включ.	0,0005	0,0008	
CB.	0,0020 * 0,0050 *	0,0010	0,0015	
	0.0050 * 0.0100 *	0,0020	0,0030	
	0.0100 * 0.0200 *	0,0030	0,0050	
	0.0200 * 0.0500 *	0.0050	0.0070	
	0.0500 * 0.0800 *	0,0080	0,0100	
	0,0800 » 0,1000 »	0,0100	0.0150	

3. АТОМНО-АБСОРБЦИОННЫЙ МЕТОД

3.1. Сущность метода

Метод основан на растворении пробы в соляной кислоте и измерении атомной абсорбции галлия при длине волны 287,4 нм в пламени ацетилен — закись азота.

3.2. Аппаратура, реактивы и растворы

Спектрофотометр атомно-абсорбционный модели Перкин-Элмер, Сатурн или аналогичного типа с источником излучения для галлия и горелкой для пламени адетилен — закись азота.

Вода, дважды дистиллированная.

Ацетилен в баллонах технический по ГОСТ 5457.

Закись азота.

Кислота соляная по ГОСТ 3118, разбавленная 1:1.

Кислота азотная по ГОСТ 4461.

Никель (II) хлорид по ГОСТ 4038, раствор е массовой долей 0,2 %.

Водорода пероксид по ГОСТ 10929.

Ацетон по ГОСТ 2603.

Алюминий марки А999 по ГОСТ 11069, стружка. Непосредственно перед употреблением стружку очищают в небольшом количестве раствора соляной кислоты, промывают водой, ацетоном, высушивают в сушильном шкафу при температуре 100 °C в течение 2—3 мин и охлаждают в эксикаторе.

Раствор алюминия 20 г/дм³; 10 г алюминия помещают в стакан вместимостью 600 см³, добавляют небольшими порциями 300 см³ раствора соляной кислоты и растворяют при нагревании, добавляя 1 см³ раствора хлорида никеля. Раствор охлаждают, переносят в мерную колбу вместимостью 500 см³, доливают до метки водой и перемешивают.

Галлий металлический по ГОСТ 12797.

Галлия (III) оксид (Ga,O,).

Стандартные растворы галлия

Раствор А: 1,0000 г галлия или 1,3442 г оксида галлия, предварительно прокаленного при температуре 300 °C и охлажденного в эксикаторе, растворяют в 50 см³ раствора соляной кислоты с добавлением 1—2 капель азотной кислоты, раствор переносят в мерную колбу вместимостью 1000 см³, доливают до метки водой и перемешивают.

1 см³ раствора А содержит 1,0 мг галлия.

Раствор Б: 10,0 см³ раствора A помещают в мерную колбу вместимостью 100 см³, доливают до метки водой и перемешивают.

1 см³ раствора Б содержит 0,1 мг галлия.

- 3.3. Проведение анализа
- 3.3.1. Навеску пробы массой І г помещают в стакан вместимостью 400 см³ и приливают небольшими порциями 30 см³ раствора соляной кислоты. После прекращения бурной реакции стакан с раствором осторожно нагревают и добавляют несколько капель раствора пероксида водорода. После растворения избыток пероксида водорода удаляют кипячением. Раствор охлаждают, переносят в мерную колбу вместимостью 100 см³, доливают до метки водой и перемешивают.

C. 4 FOCT 12697.13-90

Раствор контрольного опыта готовят, используя вместо навески пробы навеску алюминия марки A999.

3.3.2. Для построения градуировочного графика в шесть из семи мерных колб вместимостью 100 см³ помещают 1,0; 2,0; 4,0; 6,0; 8,0 и 10,0 см³ стандартного раствора Б, что соответствует 0,1; 0,2; 0,4; 0,6; 0,8 и 1,0 мг галлия. Во все колбы добавляют по 50 см³ раствора алюминия, доливают до метки водой и перемешивают.

Измеряют атомную абсорбцию галлия в растворе пробы, растворе контрольного опыта и в растворах для построения градуировочного графика при длине волны 287,4 нм в пламени ацетилен — закись азота.

Из полученных значений атомной абсорбции растворов, содержащих стандартный раствор, вычитают значение атомной абсорбции раствора, не содержащего стандартного раствора, и по полученным значениям атомных абсорбций и соответствующим им массам галлия строят градуировочный график.

Значение атомной абсорбции раствора контрольного опыта вычитают из значения атомной абсорбции раствора пробы и по градуировочному графику находят массу галлия в растворе пробы.

- 3.4. Обработка результатов
- 3.4.1. Массовую долю галлия (Х) в процентах вычисляют по формуле

$$X = \frac{m_1}{m \cdot 1000} \cdot 100$$
,

где $m_{_1}$ — масса галлия в растворе пробы, найденная по градуировочному графику, мг;

т — масса навески пробы, г.

3.4.2. Абсолютные допускаемые расхождения результатов параплельных определений не должны превышать значений, приведенных в табл. 2.

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТАН И ВНЕСЕН Министерством металлургии СССР

РАЗРАБОТЧИКИ

- Т. И. Жилина, Н. А. Пономарева, И. М. Козловская
- УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по управлению качеством продукции и стандартам от 10.12.90 № 3085
- 3. Стандарт полностью соответствует СТ СЭВ 6737-89
- 4. ВВЕДЕН ВПЕРВЫЕ

5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер пункта	Обозначение НТД, на который дана ссылка	Номер пункта
ГОСТ 2603—79	3.2	ΓΟCT 595575	2.2
ΓOCT 3118—77	2.2, 3.2	ГОСТ 10929—76	3.2
ΓΟCT 4038—79	2.2, 3.2	ΓΟCT 11069—2001	3.2
ΓΟCT 4166—76	2.2	ΓΟCT 12697.1—77	Paran, 1
ΓΟCT 4461—77	3.2	ΓΟCT 12797—77	2.2, 3.2
ΓOCT 5457—75	3.2	ΓΟCT 17746—96	2.2

6. ПЕРЕИЗДАНИЕ