ТУРБИНЫ ПАРОВЫЕ СТАЦИОНАРНЫЕ МАЛОЙ МОЩНОСТИ

ОБЩИЕ ТЕХНИЧЕСКИЕ УСЛОВИЯ

Издание официальное

Поправка к Изменению № 1 ГОСТ 28969—91 Турбины паровые стационарные малой мощности. Общие технические условия

В каком месте	Напечатано	Должно быть
За принятие изменения проголосовали национальные органы по стандартизации	AM, BY, KG, RU, UZ	AM, BY, KZ, KG, RU, UZ
следующих государств:		

(ИУС № 4 2022 г.)

УДК 621.165:006.354

межгосударственный стандарт

ТУРБИНЫ ПАРОВЫЕ СТАЦИОНАРНЫЕ МАЛОЙ МОЩНОСТИ

Общие технические условия

Stationary steam turbines of low capacity.

General specifications

ГОСТ 28969—91

MKC 27.040 ΟΚΠ 31 1111

Дата введения <u>01.01.92</u>

Настоящий стандарт распространяется на турбины паровые стационарные мощностью до 50 МВт, предназначенные для привода турбогенераторов.

Стандарт не распространяется на турбины для АЭС.

Стандарт устанавливает требования к турбинам, изготовляемым для нужд народного хозяйства и экспорта.

Для турбин, предназначенных для экспорта, допускаются обусловленные договором между предприятием и внешнеэкономической организацией или контрактом отклонения от требований настоящего стандарта.

Требования пп. 2.1.2, 2.1.4, 2.1.5.14, 2.1.6, 2.2, 7.1, 7.2 являются обязательными, другие требования настоящего стандарта являются рекомендуемыми.

1. ОСНОВНЫЕ ПАРАМЕТРЫ

- 1.1. Турбины следует изготовлять следующих типов:
- К конденсационные;
- П теплофикационные с производственным регулируемым отбором пара;
- ПТ теплофикационные с производственным и отопительным регулируемыми отборами пара;
 - Р теплофикационные с противодавлением без регулируемого отбора пара;
- ΠP теплофикационные с противодавлением и с производственным регулируемым отбором пара.
- 1.2. Номинальные значения основных параметров устанавливают в технических условиях (ТУ) на турбины конкретных типоразмеров.
- 1.3. Обозначение турбины должно включать тип турбины, номинальную мощность, максимальную мощность для турбин типа ПТ, номинальное давление свежего пара, номинальное давление отбираемого пара для турбин типов П, ПТ и ПР, номинальное давление пара за турбиной для турбин типов Р и ПР.

Пример условного обозначения теплофикационной паровой турбины типа ПТ, номинальной мощностью 25 МВт и максимальной мощностью 30 МВт, с номинальным давлением свежего пара 8,8 МПа и давлением отбираемого пара 1,0 МПа:

Турбина паровая ПТ-25/30—8,8/1,0

Примечания:

- 1. $^{\circ}$ В условных обозначениях разрабатываемых турбин значение абсолютного давления пара указывают в мегапаскалях (МПа). В условных обозначениях существующих и модернизируемых турбин допустимо указывать давление пара в килограмм-силах на квадратный сантиметр (кгс/см 2).
- 2. В конструкторской и нормативно-технической документации (НТД) к обозначению турбины по настоящему стандарту допустимо добавлять обозначение модификации.

Издание официальное Перепечатка воспрещена

© Издательство стандартов, 1991 © ИПК Издательство стандартов, 2004

- 1.4. Турбины должны допускать длительную работу при отклонениях параметров свежего пара от их номинальных значений в пределах, указанных в технических условиях (ТУ) на турбины конкретных типоразмеров. Условия такой работы должны быть указаны в ТУ на турбины конкретных типоразмеров.
- 1.5. Пределы регулирования давления отбираемого пара и пара за турбиной для турбин типов П, ПТ, Р, ПР должны быть указаны в ТУ на турбины конкретных типоразмеров.
- 1.6. В соответствии с ГОСТ 183 для турбин мощностью 25 МВт и более направление вращения ротора должно быть правое (по часовой стрелке, если смотреть на передний подшипник в сторону турбогенератора); для турбин мощностью менее 25 МВт направление вращения ротора должно согласовываться с заказчиком.
- 1.7. Удельные расходы пара на теплофикационном режиме и удельные расходы теплоты на конденсационном режиме для турбин типов П и ПТ и удельные расходы пара для турбин типов Р и ПР при номинальных значениях основных параметров, а также условия, при которых обеспечиваются удельные расходы пара (теплоты) и допуски на их значения, устанавливают в ТУ на турбины конкретных типоразмеров.

2. ТЕХНИЧЕСКИЕ ТРЕБОВАНИЯ

2.1. Общие требования

- 2.1.1. Требования к параметрам
- 2.1.1.1. Турбины должны обеспечивать длительную работу при температуре охлаждающей воды до 33 °C включительно.

По заказу потребителя турбины должны обеспечивать работу при температуре охлаждающей воды свыше 33 °C. Условия такой работы должны быть указаны в ТУ на турбины конкретных типоразмеров.

- 2.1.2. Требования к системе защиты
- 2.1.2.1. Турбина должна быть снабжена системой защиты, обеспечивающей ее останов при возникновении аварийных режимов работы.
- 2.1.2.2. Система защиты должна обеспечивать немедленное закрытие стопорных и регулирующих клапанов при снижении давления жидкости в системе регулирования до определенного значения.
- 2.1.2.3. Система защиты должна быть спроектирована таким образом, чтобы ее можно было взвести только вручную путем местного или дистанционного воздействия.
- 2.1.2.4. Части низкого давления и конденсатор должны быть защищены от недопустимого повышения давления с помощью клапанов, предохранительных диафрагм или других устройств.
- 2.1.2.5. На паропроводах регенеративных и регулируемых отборов для внешних потребителей должны быть установлены обратные клапаны с автоматическим приводом для предотвращения попадания пара и воды в проточную часть турбины.
- 2.1.2.6. Подогреватели высокого давления должны быть оснащены предохранительными устройствами, защищающими их корпуса от недопустимого повышения давления в случае, если подогреватели не рассчитаны на максимально возможное давление в отборе турбины.
 - 2.1.3. Требования к маневренности
- 2.1.3.1. Турбины должны обеспечивать длительную работу в диапазоне мощности от 30 % до 100 % номинальной. Скорости изменения мощности в регулировочном диапазоне должны быть установлены в ТУ на турбины конкретных типоразмеров.
- 2.1.3.2. Турбины должны обеспечивать длительную работу в регулировочном диапазоне при отклонениях частоты вращения ротора от 98 % до 101 % номинальной.

Допускается работа турбины при следующих значениях частоты сети энергосистемы:

- от 50,5 до 51,0 Γ ц один раз продолжительностью не более 3 мин и не более 500 мин за весь срок эксплуатации;
- от 49,0 до 48,0 Γ ц один раз продолжительностью не более 5 мин и не более 750 мин за весь срок эксплуатации;
- от 48,0 до 47,0 Γ ц один раз продолжительностью не более 1 мин и не более 180 мин за весь срок эксплуатации;
- от 47,0 до 46,0 Γ ц один раз продолжительностью не более 10 с и не более 30 мин за весь срок эксплуатации.

- 2.1.3.3. Турбины должны быть рассчитаны на общее число пусков за весь срок эксплуатации не менее 3800 из различных тепловых состояний, в том числе 100 пусков из холодного состояния.
 - 2.1.4. Требования к системе регулирования
- 2.1.4.1. Степень неравномерности регулирования частоты вращения при номинальных параметрах пара должна быть в пределах от 4 % до 5 % номинальной частоты вращения.

Для турбины типа P степень неравномерности допускается от 4,5 % до 6,5 % номинальной частоты вращения.

- 2.1.4.2. Степень нечувствительности системы регулирования частоты вращения при любой мощности не должна превышать 0,3 % номинальной частоты вращения в гидравлической системе регулирования.
- 2.1.4.3. Система регулирования турбины должна иметь механизм управления, обеспечивающий перемещение регулирующих клапанов из положения холостого хода до полной нагрузки за время не более 40 с.
- 2.1.4.4. Система регулирования турбин при внезапном сбросе мощности с отключением генератора от сети во всем диапазоне мощностей, включая максимальную, при номинальных параметрах пара и номинальной частоте вращения должна ограничивать динамический заброс частоты вращения, не допуская срабатывания автоматов безопасности, отрегулированных на включение при повышении частоты вращения ротора от 10 % до 12 % сверх номинальной или до значения, указанного в ТУ на турбины конкретных типоразмеров.
- 2.1.4.5. При одновременно закрытых стопорных и регулирующих клапанах и номинальных параметрах пара ротор турбины не должен вращаться.

При раздельно закрытых клапанах (только стопорных либо только регулирующих) допустимая частота вращения не должна превышать 50 % номинальной.

- 2.1.4.6. Турбины должны допускать сброс электрической нагрузки со скоростью, определяемой быстродействием системы регулирования турбины.
 - 2.1.5. Требования к конструкции
- 2.1.5.1. Турбины типов П, ПТ, ПР и Р должны допускать возможность параллельной работы по отпуску пара из производственного отбора в общий паровой коллектор, а также при параллельном использовании редукционно-охладительных установок.

При необходимости возможность параллельной работы турбины по отопительному отбору должна быть указана в ТУ на турбины конкретных типоразмеров.

- 2.1.5.2. Конденсационные турбины должны обеспечивать длительную работу при температуре пара в выхлопном патрубке до 70 °C.
- 2.1.5.3. Турбины должны быть снабжены валоповоротным устройством (ВПУ). При этом должна быть исключена возможность включения ВПУ при вращающемся роторе и пуска турбины при работающем ВПУ.
- 2.1.5.4. Турбины должны быть снабжены предохранительными устройствами на паропроводах регулируемых отборов и на противодавлении (для теплофикационных турбин).
- 2.1.5.5. Стопорные клапаны (при двух и более) должны обеспечивать возможность их расхаживания при работе турбины под нагрузкой.
- 2.1.5.6. Дренажи турбин должны быть направлены через соответствующие расширители в конденсатор, для турбин с противодавлением в бак низких точек.
- 2.1.5.7. Корпусные части турбин, работающие под давлением, должны выдерживать пробное гидравлическое давление, превышающее максимальное рабочее давление не менее чем на 50 %.
- 2.1.5.8. Ротор турбины на заводе-изготовителе должен быть испытан в течение 2 мин повышением частоты вращения на 2 % выше верхнего предела срабатывания аварийной защиты по повышению частоты вращения, но не более чем на 20 % номинальной.
- 2.1.5.9. Для систем маслоснабжения турбин следует применять турбинное или огнестойкое масло
- 2.1.5.10. Вид климатического исполнения турбин УХЛ4 (без местного регулирования) по ГОСТ 15150. По заказу потребителя турбины могут быть изготовлены в другом климатическом исполнении.
- 2.1.5.11. Массу турбины, конденсатора и основного вспомогательного оборудования, комплектующего турбину, без запасных частей, а также массу наиболее тяжелого элемента турбины указывают в ТУ на турбины конкретных типоразмеров.
- 2.1.5.12. Конструкция турбины должна обеспечивать свободу теплового расширения цилиндра при всех режимах эксплуатации.

- 2.1.5.13. Конструкция и материал дисков и лопаточного аппарата турбин, работающих в зоне фазового перехода, должны обеспечивать их коррозионную стойкость в процессе длительной эксплуатации. При этом требования к качеству питательной воды и пара установлены в ТУ.
- 2.1.5.14. Конструкция турбин должна выдерживать землетрясение до 6 баллов включительно по шкале MSK-64. Необходимость работы турбины при значении проектного землетрясения более 6 баллов должна быть указана в ТЗ на конкретный тип турбины.
 - 2.1.6. Требования к надежности
 - 2.1.6.1. Турбины должны иметь следующие показатели надежности:

срок службы между ремонтами со вскрытием цилиндров — не менее 6 лет;

средняя наработка на отказ — не менее 7000 ч;

коэффициент готовности — не менее 0,98;

полный установленный срок службы — не менее 40 лет, за исключением быстроизнашивающихся деталей.

Ресурс деталей и сборочных единиц из жаропрочных материалов турбин с температурой свежего пара свыше 450 °C устанавливают в ТУ на турбины конкретных типоразмеров.

- 2.1.6.2. Среднее квадратическое значение виброскорости подшипников в вертикальном, поперечном и осевом направлениях на всех режимах работы турбин при номинальной частоте вращения должно соответствовать требованиям ГОСТ 25364.
 - 2.1.7. Требования к ремонтопригодности
- 2.1.7.1. Требования к ремонтопригодности должны соответствовать НТД по ремонтопригодности, утвержденной в установленном порядке.
- 2.1.7.2. Конструкция турбин и вспомогательного оборудования должна предусматривать возможность проведения ремонтных работ и замену деталей, в том числе быстроизнашивающихся.
- 2.1.7.3. Турбины должны быть снабжены комплектами специального инструмента и приспособлений для проведения ремонтных работ.
- 2.1.7.4. Крупногабаритные сборочные единицы турбин должны быть оснащены устройствами (люками, скобами, поручнями), обеспечивающими осмотр их внутренних поверхностей и проведение ремонта.
- 2.1.7.5. Детали и сборочные единицы турбин массой более 20 кг должны иметь устройства для подъема, спуска и удержания изделий на весу при монтажных и ремонтных работах, если контуры изделия не позволяют удобно и надежно захватить его тросом подъемного устройства.
- 2.1.7.6. Все паропроводы, присоединяемые к турбинам, должны быть доступны для технического осмотра, дефектоскопии (просвечивания гамма-лучами или проверки ультразвуком), если она предусмотрена проектом, ремонта и нанесения тепловой изоляции.
- 2.1.7.7. В конструкции вновь проектируемых турбин должна быть предусмотрена возможность балансировки ротора без вскрытия цилиндра.
- 2.1.7.8. Конструкция корпусов подшипников должна предусматривать установку приспособления для подъема ротора при выкатывании нижних половин вкладышей.
- 2.1.7.9. Конструкция радиальных, концевых и диафрагменных уплотнений турбин должна предусматривать возможность замены элементов и восстановления зазоров в процессе ремонта.
- 2.1.7.10. Сборочные единицы и детали, устанавливаемые соосно с ротором, должны иметь специальные регулируемые элементы для их центровки относительно ротора.
- 2.1.7.11. Быстроизнашиваемые детали турбин должны быть легкосъемными для их замены в процессе эксплуатации и при ремонте.

2.2. Требования безопасности

- 2.2.1. Турбины должны соответствовать требованиям ГОСТ 12.2.003 и ГОСТ 12.2.049.
- 2.2.2. Конструкция турбин должна обеспечивать электро- и пожаробезопасность при их работе. Турбины должны иметь предохранительные и оградительные устройства, необходимые для безопасной эксплуатации.
- 2.2.3. Конструкция подшипников турбин должна исключать вытекание масла и масляных аэрозолей по валу наружу (на фундаменты, настил рабочей площадки, оборудование и т. п.).
- 2.2.4. Смотровые стекла сливных патрубков подшипников должны иметь возможность освещаться ламповыми устройствами во взрывозащищенном исполнении.

Напряжение ламповых устройств должно быть не более 12 В.

2.2.5. В сливных маслопроводах подшипников турбин изгиб труб должен быть плавным и сечение труб в направлении слива не должно уменьшаться.

- 2.2.6. Система маслоснабжения турбин должна исключать попадание масла и его паров в окружающую среду. При разуплотнении фланцевых соединений масляной системы должно быть исключено попадание масла на горячие поверхности.
- 2.2.7. Корпуса турбины, стопорных и регулирующих клапанов и паропроводы должны быть покрыты тепловой изоляцией. Температура наружной поверхности изоляции должна быть не более $45\,^{\circ}\mathrm{C}$.
- 2.2.8. Конструкция турбин должна обеспечивать плотность разъемных фланцевых соединений во время эксплуатации для предотвращения протечки пара в машинный зал.
- 2.2.9. Обшивки корпуса турбин, клапанов и паропроводов должны иметь устройства, обеспечивающие удобство и безопасность их установки и съема.
 - 2.2.10. Фундаментные плиты опор подшипников и корпуса турбины должны быть заземлены.
 - 2.2.11. Допустимый уровень вибрации на рабочих местах по ГОСТ 12.1.012.
- 2.2.12. Шумовые характеристики турбины должны быть установлены в ТУ на турбины конкретных типоразмеров.
- 2.2.13. Органы аварийного выключения должны быть красного цвета и быть легкодоступными для обслуживающего персонала.

Символы органов управления должны соответствовать требованиям ГОСТ 12.4.040. Органы управления — по ГОСТ 12.2.064.

- 2.2.14. Сигнальные цвета и знаки безопасности по ГОСТ 12.4.026 * .
- 2.2.15. Основные размеры и значения прилагаемых усилий должны соответствовать: для рукояток рычагов ГОСТ 21753;

для маховиков — ГОСТ 21752.

2.2.16. Температура поверхности органов управления, предназначенных для выполнения операций без применения средств индивидуальной защиты рук, а также для выполнения операций в аварийных ситуациях должна быть не выше $40\,^{\circ}$ С для органов управления, изготовленных из металла, и не выше $50\,^{\circ}$ С — для органов управления, изготовленных из материалов с низкой теплопроводностью.

2.3. Требования к сырью, материалам и комплектующим изделиям

- 2.3.1. Качество материалов, применяемых для изготовления турбин, должно соответствовать требованиям стандартов, ТУ и техническим требованиям чертежей.
- 2.3.2. Выбор материалов для деталей, не подвергающихся значительным напряжениям при рабочих температурах, должен проводиться с таким расчетом, чтобы избежать недопустимого ухудшения свойства материала вследствие:

изменения внутренней структуры или состава;

взаимодействия между материалом и окружающей средой.

2.3.3. Материалы, используемые для напряженных деталей, должны удовлетворять условиям п. 2.3.2, а также должны быть выбраны на основании экспериментально полученных данных, подтверждающих, что под воздействием напряжений, температуры и заданного срока эксплуатации в материале не появятся трещины и деформации, превышающие допустимые значения.

2.4. Комплектность

2.4.1. Комплектность должна быть установлена в ТУ на турбины конкретных типоразмеров.

2.5. Маркировка

- 2.5.1. На каждой турбине должна быть установлена табличка по ГОСТ 12971. Сведения об изделии, указываемые на табличке, устанавливают в ТУ на турбины конкретных типоразмеров.
 - 2.5.2. Маркировка упаковки должна соответствовать требованиям ГОСТ 14192.

В случае, если оборудование не подлежит упаковке, маркировку наносят на прочно прикрепленном ярлыке или на самом изделии.

- 2.5.3. Комплектующие изделия маркируют в соответствии с требованиями НТД на эти изделия.
- 2.5.4. Надписи на табличке должны быть четкими и долговечными.

2.6. Упаковка

- 2.6.1. Окраску и консервацию элементов турбины и комплектующих изделий проводят в соответствии с требованиями стандартов, ТУ и чертежей с учетом условий транспортирования и хранения. Для окраски и консервации применяют материалы, отвечающие требованиям конструкторской документации на изделия.
 - 2.6.2. Упаковка турбин и сопроводительной документации по ГОСТ 23170.

^{*} На территории Российской Федерации действует ГОСТ Р 12.4.026—2001.

3. ПРИЕМКА

- 3.1. Турбины должны проходить приемосдаточные испытания на стенде предприятия-изготовителя и на месте эксплуатации.
- 3.2. Турбины должны проходить на стенде изготовителя паровые испытания без генератора при номинальной частоте вращения.

Должны быть проверены:

качество изготовления сборочных единиц и турбин в сборе;

правильность работы отдельных сборочных единиц и их взаимодействие в рабочем состоянии; работа подшипников и уровень вибрации;

работа системы регулирования турбины;

срабатывание автоматов безопасности при повышении частоты вращения сверх номинальной.

3.3. Приемка турбин на месте эксплуатации должна состоять из следующих этапов:

проверка комплектности и технического состояния турбины и комплектующего оборудования перед сборкой и монтажом;

приемка сборочных единиц и систем турбин после проведения монтажных работ;

приемка сборочных единиц и систем турбин по результатам их испытаний;

приемка турбин по результатам приемосдаточных испытаний.

3.3.1. Приемка должна включать:

проверку плотности стопорных клапанов;

проверку правильности показаний измерительных приборов, состояния блокировок и систем защиты турбины;

испытание регуляторов безопасности;

снятие характеристик систем регулирования и проверку ее работы;

проверку режимов пуска турбины;

испытание качества тепловой изоляции;

проверку уровня вибрации подшипников турбины и турбогенератора;

проверку работы системы регенерации;

проверку плотности вакуумной системы;

проверку закрытия обратных клапанов на паропроводах отборов;

испытание предохранительных клапанов.

3.3.2. В задачу приемосдаточных испытаний входит проверка в эксплуатации отсутствия дефектов, препятствующих длительной эксплуатации турбины. Завершающим этапом приемки в эксплуатацию должны быть испытания в течение 72 ч при работе по прямому назначению и при номинальной электрической и тепловой нагрузках. Если по условиям эксплуатации электростанции номинальные нагрузки не могут быть достигнуты, то турбина должна быть принята в эксплуатацию по результатам испытаний при максимально возможной нагрузке.

Приемку турбины в эксплуатацию подтверждают актом и соответствующей записью в формуляре (паспорте).

3.4. На головных турбинах после приемосдаточных испытаний и приемки в эксплуатацию следует проводить приемочные испытания с целью проверки показателей качества:

тепловые испытания по определению экономичности турбины;

испытание системы регулирования и защиты;

испытания по определению уровня вибрации подшипников;

испытания по определению уровня шума.

3.5. Приемочные испытания головных турбин проводят в течение 12 мес после приемки их в эксплуатацию по программам и методикам, согласованным и утвержденным в установленном порядке.

4. МЕТОДЫ КОНТРОЛЯ

- 4.1. Контроль должен включать определение фактических данных, характеризующих качество изготовленной турбины, проверку ее соответствия техническим требованиям нормативно-технической и конструкторской документации.
- 4.2. Методы контроля должны быть установлены соответствующими программами и методиками для всех видов испытаний.
 - 4.3. Показатели надежности проверяют по данным эксплуатации с периодичностью 5 лет.

5. ТРАНСПОРТИРОВАНИЕ И ХРАНЕНИЕ

5.1. Турбины могут транспортироваться железнодорожным, автомобильным, морским и речным транспортом. Транспортирование морским транспортом осуществляется только в закрытых транспортных средствах. Условия хранения — 6 (ОЖ2) по ГОСТ 15150. Условия транспортирования — 8 (ОЖ3) по ГОСТ 15150.

Условия хранения электрооборудования, измерительной аппаратуры и запасных частей -1 (Л) или 2 (С) по ГОСТ 15150.

5.2. Детали и сборочные единицы турбин должны быть подвергнуты противокоррозионной защите по ГОСТ 9.014, обеспечивающей для условия хранения 8 (ОЖ3) ГОСТ 15150 срок защиты без переконсервации не менее одного года.

6. УКАЗАНИЯ ПО ЭКСПЛУАТАЦИИ

- 6.1. Эксплуатацию турбины, включая ее обслуживание в период останова в ремонт или резерв, проводят в соответствии с эксплуатационной документацией, разработанной и утвержденной в установленном порядке.
- 6.2. Техническая документация по эксплуатации должна охватывать вопросы эксплуатации, обеспечивающие надежную и экономичную работу турбины, в ней должны быть указаны ограничения при эксплуатации в соответствии с техническими требованиями (раздел 2 настоящего стандарта), а также другие требования, определяемые конструктивными особенностями и режимами эксплуатации конкретных турбин. Должны быть приведены требования к качеству свежего пара, конденсата и жидкостей систем смазки и регулирования.

7. ГАРАНТИИ ИЗГОТОВИТЕЛЯ

- 7.1. Изготовитель гарантирует соответствие паровых турбин требованиям настоящего стандарта при соблюдении условий транспортирования, хранения, монтажа и эксплуатации.
- 7.2. Гарантийный срок эксплуатации 24 мес со дня ввода турбины в эксплуатацию, но не более 36 мес со дня отгрузки турбины изготовителем.

С. 8 ГОСТ 28969-91

ИНФОРМАЦИОННЫЕ ДАННЫЕ

- 1. РАЗРАБОТАН И ВНЕСЕН Министерством тяжелого машиностроения СССР
- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Государственного комитета СССР по управлению качеством продукции и стандартам от 09.04.91 № 471
- 3. ВВЕДЕН ВПЕРВЫЕ

4. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка	Номер пункта, подпункта	
ΓΟCT 9.014—78	5.2	
ΓΟCT 12.1.012—90	2.2.11	
ΓΟCT 12.2.003—91	2.2.1	
ΓΟCT 12.2.049—80	2.2.1	
ΓΟCT 12.2.064—81	2.2.13	
ΓΟCT 12.4.026—76	2.2.14	
ΓΟCT 12.4.040—78	2.2.13	
ΓΟCT 183—74	1.6	
ΓΟCT 12971—67	2.5.1	
ΓΟCT 14192—96	2.5.2	
ΓΟCT 15150—69	2.1.5.10, 5.1, 5.2	
ΓΟCT 21752—76	2.2.15	
ΓΟCT 21753—76	2.2.15	
ΓΟCT 23170—78	2.6.2	
ΓΟCT 25364—97	2.1.6.2	

5. ПЕРЕИЗДАНИЕ. Сентябрь 2004 г.

Редактор *Т.С. Шеко*Технический редактор *Н.С. Гришанова*Корректор *В.И. Варенцова*Компьютерная верстка *И.А. Налейкиной*

Изд. лиц. № 02354 от 14.07.2000. Сдано в набор 14.10.2004. Подписано в печать 03.11.2004. Усл. печ.л. 1,40. Уч.-изд.л. 0,95. Тираж 63 экз. С 4396. Зак. 995.

Изменение № 1 ГОСТ 28969—91 Турбины паровые стационарные малой мощности. Общие технические условия

Принято Межгосударственным советом по стандартизации, метрологии и сертификации (протокол № 137-П от 26.02.2021)

Зарегистрировано Бюро по стандартам МГС № 15481

За принятие изменения проголосовали национальные органы по стандартизации следующих государств: АМ, ВҮ, КG, RU, UZ [коды альфа-2 по МК (ИСО 3166) 004]

Дату введения в действие настоящего изменения устанавливают указанные национальные органы по стандартизации*

Пункт 1.1 дополнить абзацами:

«Т — теплофикационные с отопительным отбором пара и конденсатором;

ПТР — теплофикационные с противодавлением и с производственным и теплофикационным отборами пара».

Пункт 1.3. Первый абзац. Заменить слова: «типа ПТ» на «типов Т, П, ПТ и ПР»; дополнить абзацем (после первого):

«Номинальная и максимальная мощности турбин типов Т, П, ПТ и ПР указываются в виде дроби в одну строку: в числителе — номинальная мощность, в знаменателе — максимальная мощность. Давление производственного пара указывается в знаменателе под номинальным давлением свежего пара».

Пункт 1.6. ГОСТ 183 дополнить знаком сноски — *; дополнить сноской:

Подпункт 2.1.3.2 изложить в новой редакции:

- «2.1.3.2. Турбины должны обеспечивать работу с любой нагрузкой в пределах регулировочного диапазона по активной мощности*:
- а) длительно при изменении частоты электрического тока в диапазоне значений от 50,5 до 49,0 Гц (включая верхнюю границу диапазона);
- б) кратковременно в диапазоне частот электрического тока (включая верхнюю границу диапазона): от 55,0 до 53,0 Гц с допустимой продолжительностью, устанавливаемой заводом-изготовителем;
- от 53,0 до 51,0 Гц с допустимой продолжительностью не менее 7 с и не более 10 с, суммарно не более 30 мин за весь срок эксплуатации;
- от 51,0 до 50,5 Γ ц с допустимой продолжительностью не менее 3 мин, суммарно не более 500 мин за весь срок эксплуатации;
- от 49,0 до 48,0 Гц с допустимой продолжительностью не менее 5 мин, суммарно не более 750 мин за весь срок эксплуатации;
- от 48,0 до 47,0 Гц с допустимой продолжительностью не менее 40 с и не более 1 мин, суммарно не более 180 мин за весь срок эксплуатации;
- от 47,0 до 46,0 Гц (включая нижнюю границу диапазона) с допустимой продолжительностью не менее 1 с и не более 10 с, суммарно не более 30 мин за весь срок эксплуатации»;

дополнить сноской:

^{*} На территории Российской Федерации действует ГОСТ IEC 60034-1—2014 «Машины электрические вращающиеся. Часть 1. Номинальные значения параметров и эксплуатационные характеристики».

^{*} Для генерирующего оборудования, введенного в эксплуатацию до вступления в силу Изменения № 1 (для Российской Федерации — до вступления в силу Правил технологического функционирования электроэнергетических систем, утвержденных постановлением Правительства Российской Федерации от 13 августа 2018 г. № 937 (далее — Правила)), допустимо отклонение от требований настоящего подпункта при условии предоставления владельцами генерирующего оборудования в соответствующий диспетчерский центр субъекта оперативно-диспетчерского управления заключения завода-изготовителя, содержащего технические причины отклонения от указанных требований, а также разрешенные диапазоны частот и продолжительность работы в них генерирующего

^{*} Дата введения в действие на территории Российской Федерации — 2021—06—01.

оборудования, которые не меньше фактических диапазонов и продолжительности, зафиксированных на дату вступления в силу Изменения № 1 (для Российской Федерации — на дату вступления в силу вышеуказанных Правил)».

Подпункт 2.1.6.2. ГОСТ 25364 дополнить знаком сноски — *; дополнить сноской:

Пункт 2.2.14. ГОСТ 12.4.026*. Исключить знак сноски — *; исключить сноску.

Пункт 3.2 изложить в новой редакции:

«3.2 Турбины должны проходить испытания на стенде предприятия-изготовителя с применением валоповоротного устройства по разработанной предприятием-изготовителем программе. По согласованию между заказчиком и изготовителем турбины могут проходить на стенде предприятия-изготовителя паровые испытания без генератора при номинальной частоте вращения, при этом должны быть проверены:

- качество изготовления сборочных единиц и турбин в сборе;
- правильность работы отдельных сборочных единиц и их взаимодействие в рабочем состоянии;
- работа подшипников и уровень вибрации;
- работа системы регулирования турбины;
- срабатывание автоматов безопасности при повышении частоты вращения сверх номинальной». Раздел «Информационные данные». Пункт 4. Таблица. Графа «Обозначение НТД, на который дана ссылка». Заменить ссылки:

«ГОСТ 12.1.012—90 на ГОСТ 12.1.012—2004; ГОСТ 12.4.026—76 на ГОСТ 12.4.026—2015; ГОСТ 183—74 на ГОСТ 183—74*; ГОСТ 25364—97 на ГОСТ 25364—97**»; дополнить сносками:

(ИУС № 5 2021 г.)

 $^{^*}$ На территории Российской Федерации действует ГОСТ Р 55265.2—2012 (ИСО 10816-2:2009) «Вибрация. Контроль состояния машин по результатам измерений вибрации на невращающихся частях. Часть 2. Стационарные паровые турбины и генераторы мощностью более 50 МВт с рабочими частотами вращения 1500, 1800, 3000 и 3600 мин $^{-1}$ ».

^{*} На территории Российской Федерации действует ГОСТ IEC 60034-1—2014 «Машины электрические вращающиеся. Часть 1. Номинальные значения параметров и эксплуатационные характеристики».

^{**} На территории Российской Федерации действует ГОСТ Р 55265.2—2012 (ИСО 10816-2:2009) «Вибрация. Контроль состояния машин по результатам измерений вибрации на невращающихся частях. Часть 2. Стационарные паровые турбины и генераторы мощностью более 50 МВт с рабочими частотами вращения 1500, 1800, 3000 и 3600 мин^{-1} ».

Поправка к Изменению № 1 ГОСТ 28969—91 Турбины паровые стационарные малой мощности. Общие технические условия

В каком месте	Напечатано	Должно быть
За принятие изменения проголосовали национальные органы по стандартизации	AM, BY, KG, RU, UZ	AM, BY, KZ, KG, RU, UZ
следующих государств:		

(ИУС № 4 2022 г.)

Изменение № 1 ГОСТ 28969—91 Турбины паровые стационарные малой мощности. Общие технические условия

Принято Межгосударственным советом по стандартизации, метрологии и сертификации (протокол № 137-П от 26.02.2021)

Зарегистрировано Бюро по стандартам МГС № 15481

За принятие изменения проголосовали национальные органы по стандартизации следующих государств: АМ, ВҮ, КG, RU, UZ [коды альфа-2 по МК (ИСО 3166) 004]

Дату введения в действие настоящего изменения устанавливают указанные национальные органы по стандартизации*

Пункт 1.1 дополнить абзацами:

«Т — теплофикационные с отопительным отбором пара и конденсатором;

ПТР — теплофикационные с противодавлением и с производственным и теплофикационным отборами пара».

Пункт 1.3. Первый абзац. Заменить слова: «типа ПТ» на «типов Т, П, ПТ и ПР»; дополнить абзацем (после первого):

«Номинальная и максимальная мощности турбин типов Т, П, ПТ и ПР указываются в виде дроби в одну строку: в числителе — номинальная мощность, в знаменателе — максимальная мощность. Давление производственного пара указывается в знаменателе под номинальным давлением свежего пара».

Пункт 1.6. ГОСТ 183 дополнить знаком сноски — *; дополнить сноской:

Подпункт 2.1.3.2 изложить в новой редакции:

- «2.1.3.2. Турбины должны обеспечивать работу с любой нагрузкой в пределах регулировочного диапазона по активной мощности*:
- а) длительно при изменении частоты электрического тока в диапазоне значений от 50,5 до 49.0 Гц (включая верхнюю границу диапазона);
 - б) кратковременно в диапазоне частот электрического тока (включая верхнюю границу диапазона):
- от 55,0 до 53,0 Гц с допустимой продолжительностью, устанавливаемой заводом-изготовителем:
- от 53,0 до 51,0 Гц с допустимой продолжительностью не менее 7 с и не более 10 с, суммарно не более 30 мин за весь срок эксплуатации;
- от 51,0 до 50.5 Гц с допустимой продолжительностью не менее 3 мин, суммарно не более 500 мин за весь срок эксплуатации;
- от 49,0 до 48,0 Гц с допустимой продолжительностью не менее 5 мин, суммарно не более 750 мин за весь срок эксплуатации;
- от 48,0 до 47,0 Гц с допустимой продолжительностью не менее 40 с и не более 1 мин, суммарно не более 180 мин за весь срок эксплуатации;
- от 47,0 до 46,0 Гц (включая нижнюю границу диапазона) с допустимой продолжительностью не менее 1 с и не более 10 с, суммарно не более 30 мин за весь срок эксплуатации»; дополнить сноской:

^{*} На территории Российской Федерации действует ГОСТ IEC 60034-1—2014 «Машины электрические вращающиеся. Часть 1. Номинальные значения параметров и эксплуатационные характеристики».

^{*} Для генерирующего оборудования, введенного в эксплуатацию до вступления в силу Изменения № 1 (для Российской Федерации — до вступления в силу Правил технологического функционирования электроэнергетических систем, утвержденных постановлением Правительства Российской Федерации от 13 августа 2018 г. № 937 (далее — Правила)), допустимо отклонение от требований настоящего подпункта при условии предоставления владельцами генерирующего оборудования в соответствующий диспетчерский центр субъекта оперативно-диспетчерского управления заключения завода-изготовителя, содержащего технические причины отклонения от указанных требований, а также разрешенные диапазоны частот и продолжительность работы в них генерирующего

Дата введения в действие на территории Российской Федерации — 2021—06—01.

оборудования, которые не меньше фактических диапазонов и продолжительности, зафиксированных на дату вступления в силу Изменения № 1 (для Российской Федерации — на дату вступления в силу вышеуказанных Правил)».

Подпункт 2.1.6.2. ГОСТ 25364 дополнить знаком сноски — *; дополнить сноской:

Пункт 2.2.14. ГОСТ 12.4.026*. Исключить знак сноски — *; исключить сноску.

Пункт 3.2 изложить в новой редакции:

- «3.2 Турбины должны проходить испытания на стенде предприятия-изготовителя с применением валоповоротного устройства по разработанной предприятием-изготовителем программе. По согласованию между заказчиком и изготовителем турбины могут проходить на стенде предприятия-изготовителя паровые испытания без генератора при номинальной частоте вращения, при этом должны быть проверены:
 - качество изготовления сборочных единиц и турбин в сборе;
 - правильность работы отдельных сборочных единиц и их взаимодействие в рабочем состоянии;
 - работа подшипников и уровень вибрации;
 - работа системы регулирования турбины;
 - срабатывание автоматов безопасности при повышении частоты вращения сверх номинальной».

Раздел «Информационные данные». Пункт 4. Таблица. Графа «Обозначение НТД, на который дана ссылка». Заменить ссылки:

«ГОСТ 12.1.012-90 на ГОСТ 12.1.012-2004;

ГОСТ 12.4.026—76 на ГОСТ 12.4.026—2015:

ГОСТ 183-74 на ГОСТ 183-74*;

ГОСТ 25364-97 на ГОСТ 25364-97**»:

дополнить сносками:

(ИУС № 5 2021 г.)

^{*} На территории Российской Федерации действует ГОСТ Р 55265.2—2012 (ИСО 10816-2:2009) «Вибрация. Контроль состояния машин по результатам измерений вибрации на невращающихся частях. Часть 2. Стационарные паровые турбины и генераторы мощностью более 50 МВт с рабочими частотами вращения 1500, 1800, 3000 и 3600 мин⁻¹».

^{*} На территории Российской Федерации действует ГОСТ IEC 60034-1—2014 «Машины электрические вращающиеся, Часть 1. Номинальные значения параметров и эксплуатационные характеристики».

^{**} На территории Российской Федерации действует ГОСТ Р 55265.2—2012 (ИСО 10816-2:2009) «Вибрация. Контроль состояния машин по результатам измерений вибрации на невращающихся частях. Часть 2. Стационарные паровые турбины и генераторы мощностью более 50 МВт с рабочими частотами вращения 1500, 1800, 3000 и 3600 мин⁻¹».