ниобия пятиокись

ЛЮМИНЕСЦЕНТНЫЙ МЕТОД ОПРЕДЕЛЕНИЯ МАССОВОЙ ДОЛИ ФОСФОРА

Издание официальное

63 5-92/651

ГОССТАНДАРТ РОССИИ
Москва

ГОСУДАРСТВЕННЫЙ СТАНДАРТ РОССИЙСКОЙ ФЕДЕРАЦИИ

ниобия пятиокись

Люминесцентный метод определения массовой доли фосфора

ГОСТ Р 50233.3—92

Niobium pentoxide. Luminescent method for determination of phosphorus content

ОКСТУ 1709

Дата введения

01.07.93

Настоящий стандарт распространяется на пятнокись ниобия и устанавливает люминесцентный метод определения массовой доли фосфора в пятнокиси ниобия от 0,001 до 0,1%.

Метод основан на измерении в растворе интенсивности люминесценции продукта, полученного окислением тиамина фосфорномолибденовой гетерополикислотой. Массовую долю фосфора находят методом добавок.

1. ОБЩИЕ ТРЕБОВАНИЯ

Общие требования к методу анализа — по ГОСТ 18385.0.

2. АППАРАТУРА, РЕАКТИВЫ И РАСТВОРЫ

Спектрофлуориметр MPF-4 фирмы «Хитачи» с ксеноновой лампой или аналогичный прибор.

Весы аналитические.

Электропечь муфельная с терморегулятором, обеспечивающая температуру нагрева до 800°С.

Плитка электрическая.

Тигли стеклоуглеродные, никелевые или иные, выдерживающие сплавление со щелочами при температуре 600—700°С, вместимостью около 40 см³.

Стаканы кварцевые вместимостью 50 см³.

Колбы мерные вместимостью 50 и 100 см³ по ГОСТ 1770.

Пипетки с делениями вместимостью 1, 2, 5 и 10 см3.

Фильтры бумажные обеззоленные «синяя лента».

Издание официальное

С Издательство стандартов, 1992

Настоящий стандарт не может быть полностью или частично воспроизведен, тиражирован и распространен без разрешения Госстандарта России

Натрия гидроокись по ГОСТ 4328.

Натрии хлористый по ГОСТ 4233, х.ч., водный раствор кон-

центрации 50 г/дм³.

Аммоний молибденовокислый по ГОСТ 3765, х.ч., очищенный перекристаллизацией из спиртового раствора, водный раствор концентрации 0,001 моль/дм³.

Кислота соляная по ГОСТ 3118, разбавленная 1:10.

Кислота серная по ГОСТ 4204, х.ч., разбавленная 1:100. Калий фосфорнокислый однозамещенный по ГОСТ 4198, х.ч.

Раствор фосфора (основной), содержащий 1 мг/см³: навеску однозамешенного фосфорнокислого калия массой 0,439 г растворяют в воде. Раствор переводят в мерную колбу вместимостью 100 см³, доводят до метки водой и перемешивают. Раствор хранят в полиэтиленовой емкости. Раствор пригоден для использования в течение 12 мес.

Раствор фосфора (рабочий A), содержащий 0,1 мкг/см³, готовят последовательным разбавлением основного раствора в 10000

раз. Раствор пригоден для использования в течение суток.

Раствор фосфора (рабочий Б), содержащий 0,01 мкг/см³: 5 см³ рабочего раствора А помещают в мерную колбу вместимостью 50 см³, доводят до метки водой и перемешивают. Раствор пригоден для использования в течение суток.

Тиамина бромид (витамин B₁), фармакопейный раствор с концентрацией 0,06 г/дм³. Хранят в холодильном шкафу, годен

1 мес.,

Ацетон ос.ч 9-5.

Натрий тетраборнокислый по ГОСТ 4199, раствор концентрации 0,1 моль/дм³.

Бумага универсальная индикаторная.

3. ПРОВЕДЕНИЕ АНАЛИЗА

3.1. Растворение пробы

Навеску анализируемой пробы массой 0,1 г помещают в тигель из стеклоуглерода, добавляют 2 г гидроокиси натрия и сплавляют в муфельной печи при 600—700°С до получения однородного плава. Тигель с плавом охлаждают до комнатной температуры, приливают 25—30 см³ раствора хлористого натрия и кипятят в течение 2—3 мин, перемешивая содержимое фторопластовой палочкой. Затем тигель с раствором охлаждают до комнатной температуры и фильтруют содержимое в кварцевые стаканы, используя бумажный фильтр «синяя лента».

Тигель и осадок на фильтре дважды промывают 10—15 см³ раствора хлористого натрия. Фильтрат переводят в мерную колбу вместимостью 100 см³, доводят до метки водой, перемешивают и сразу отбирают аликвотную часть фильтрата объемом 5 см³,

переводят ее в мерную колбу вместимостью 100 см³, разбавляют водой до 50—60 см³, нейтрализуют соляной кислотой до рН 6—7,

доводят до метки и перемешивают.

В три кварцевых стакана вместимостью 50 см³ вводят по 1 см³ раствора серной кислоты и по 2 см³ раствора пробы, затем в два стакана вводят раствор фосфора (рабочий) так, чтобы в одном из них количество фосфора было приблизительно равным, а в другом — превышающем в два раза предполагаемое содержание фосфора в пробе. В каждый стакан приливают по 0,5 см³ раствора молибдата аммония, 0,5 см³ раствора тиамина, 2 см³ ацетона, 2,5 см³ раствора натрия тетраборнокислого и воды до общего объема 10 см³.

После прибавления каждого из реактивов содержимое стаканов осторожно перемешивают вращательными движениями; рН растворов, подготовленных к измерению флуоресценции, должен быть 8—9 (контроль по универсальной индикаторной бумаге).

Одновременно с анализом пробы проводят контрольный опыт на реактивы.

3.2. Возбуждение и регистрация спектров люминесценции

Подготовленные растворы поочередно заливают в кварцевую кювету вместимостью 1 см³, начиная с большей добавки. Кварцевую кювету помещают в кюветодержатель спектрофлуориметра MPF-4.

Спектр люминесценции возбуждают излучением ксеноновой лампы, используя длину волны линии $\lambda = 375$ нм. Спектр люминесценции регистрируют в области 410—460 нм. $\lambda_{max} = 430$ нм.

Режим регистрации: щели — 20/20, светофильтр — 350 нм.

4. ОБРАБОТКА РЕЗУЛЬТАТОВ

4.1. Массовую долю фосфора (X) в процентах вычисляют по формуле

$$X = \frac{(h_{np} - h_{\kappa}) \cdot m_{1} \cdot V_{1} \cdot V_{3}}{(h_{c} - h_{np}) \cdot m \cdot V_{3} \cdot V_{4}} \cdot 10^{-4},$$

где h_{np} — высота пика полосы люминесценции для раствора пробы, мм;

h_к — высота пика полосы люминесценции для раствора контрольного опыта, мм;

 m_1 — масса добавки фосфора, мкг;

 V₁ — вместимость мерной колбы первого раствора анализируемой пробы, см³;

V₂ — вместимость мерной колбы, взятой для разведения раствора анализируемой пробы, см³;

C. 4 FOCT P 50233.3-92

- h_c высота пика полосы люминесценции для раствора анализируемой пробы с добавкой, мм;
- т масса навески анализируемой пробы, г;
- V₃ объем аликвотной части первого раствора анализируемой пробы, взятой для разведения, см³;
- V₄ объем аликвотной части раствора пробы, взятой для измерения люминесценции, см³.

За результат анализа принимают среднее арифметическое значение результатов двух параллельных определений.

4.2. Расхождения между двумя результатами параллельных определений и двумя результатами анализа (разность большего и меньшего) с доверительной вероятностью P = 0.95 не должны превышать значений, указанных в таблице.

Массовая доля фосфора. %	Допускаемое расхождение. %	
	двух результатов парал- лельных определений	двух результатов анализа
0,0010	0,0005	0.0007
0,005	0,002	0,003
0,010	0,003	0,004
0,020	0,004	0,006
0,060	0,007	0,010
0.100	0,014	0,020

Допускаемые расхождения промежуточных значений массовых долей фосфора рассчитывают методом линейной интерполяции.

4.3. Контроль точности анализа проводят методом добавок по ГОСТ 25086.

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1. РАЗРАБОТАН И ВНЕСЕН Государственным научно-исследовательским и проектным институтом редкометаллической промышленности

РАЗРАБОТЧИКИ

- Л. Д. Штенке, А. В. Антонов
- 2. УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Госстандарта России от 03.09.92 № 1097
- 3. Срок первой проверки 1998 г. Периодичность проверки 5 лет
- 4. ВВЕДЕН ВПЕРВЫЕ
- 5. ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕН-ТЫ

Обозначение НТД, на который дана ссылка	Номер раздела	
ΓΟCT 1770—74 ΓΟCT 3118—77	2 2	
ΓΟCT 3765—78 ΓΟCT 4198—75	2 2	
ΓΟCT 4199—76 ΓΟCT 4204—77	2 2	
ΓΟCT 4233—77 ΓΟCT 4328—77	2 2	
FOCT 18385.0—89 FOCT 25086—87	1 4.3	